AD-A224 272

G, FAE COPY

NWC TP 7004

@

Tutorial on Using LISP Object-Oriented
Programming for Blackboards:
Solving the Radar Tracking Problem

by
P.R. Kersten
Research Department
and
Professor A. C. Kak
Robot Vision Laboratory
School of Electrical Engineering
Purdue University

DTIC
AUGUST 1989 ELECTE ¢
SJULIZIQW

B

NAVAL WEAPONS CENTER
China Lake, CA 93555-6001

Approved for public release; distribution 1s unlimited.

Naval Weapons Center

FOREWORD

This report describes an artificial intelligence architecture used to
solve the radar tracking problem. The research described was performed at
Purdue University during long-term training between August 1986 and
August 1988. Continuing support into fiscal year 1989 was provided by 6.1
funds from individual research and development funds from the Office of
Naval Research.

Approved by Under authority of
R.L. DERR, Head J.A. BURT
Research Department Capt., U.S. Navy
13 June 1989 Commander

Released for publication by
G.R.SCHIEFER
Technical Director

NWC Technical Publication 7004

Publishedby Technical Information Department
Collationciiiiiiiiiiiiiiiiiinnnenenanenn Cover, 46 leaves
Firstprinting ..ottt 50 copies

UNCLASSIFIED

SECIRITY CLASSIFICATION OF 7HIS PAGE (When Data Erter-a»

REPORT DOCUMENTATION PAGE

Ty 70237 GFCHLARTY CLASSIFCATION T OLITROT GE A NG5
UNCLASSIFIED
00U T A8 CATION Ay THCRITY §CISTREL TOMAT a8 T OF REPORT

Public release: distribution is unlimited.

-7 T2 llwniFICAT ON/DOWNGRADING >CHEDULE

1 2C2cORALNG ORGANIZATION REPQRT NUMBER(S) S CAONITORMG ORCaM To Gy REFGRT MiNBER(S)
NWC TP 7004
na MAME OF PERFORMING QRGANIZA T'ON 5D DFSCE SYrABOL Ta NAME OF MONCDRING TR(LN TATON

{t Jopncanie)

Naval Weapons Center

o, ~O0RESS Uiy, State, 1rd ZIP Ciide) B ATDRESS L sy St ara LIP T oy

China Lake, CA 93555-6001

334 NANE QF 5 MDING SPONSORING ORGANIZSTION 8b QFFCE SYMBOL J OORGCLREENT INSTRUMENT DENTFICAT ON wiAEER
Office of Naval Research {1 pohcacte)
3. 2DCRESS (Curv. State. and ZIP Caide) 0 SOURECE DF TOUNDING MVUMBERS j
SROGALN PROJECT TASr NORE ft
H FLEMENT NO NO NO
Arlington, VA 22217 o See backlof page

TUOTTLE e iude Security Classification:

TUTORIAL ON USING LISP OBJECT-ORIENTED PROGRAMMING FOR BLACKBOARDS:
SOLVING THE RADAR TRACKING PROBLEM (L)

12 PERSONSL AYTHOR(S)

Kersten, P. R., and Kak, A.C.

“3a "¥YPt OF REPCRT *3b TIME COVERED 14 DATE OF REPORT (Yaar, *Aonth Day) 1S PAGE COUNT

[nterim From86 Aug To88 Aug 1989, August 96

‘6 SPPLE*AENTARY NOTATION

1/ £0OSatI CODES 18 SUBJECT TERMS (7 inttnue vn rorvrse ste tf noepssamy ar-d dsanfy dv diork number)
SELD GROUP 5UB-GROUP Artificial intelligence Object-oriented programming
Blackboard Goal-driven blackboard
Radar tracking problem

19 ABSTRACT Confinue on reverse stde of necessary and idontity by block numhber

(U) The blackboard (BB) problem-solving model is an important problem-solving paradigm that has been applied
to diverse environments from robot planning to signal processing. This model permits parallel processing with
cooperation of problem-solving activities occurring via a centralized database. Goal-directed BBs form a key building
block for distributed problem-solving systems where the problem is partitioned in space or time. The BB solves
subproblems and is an important part of the distributed control.

(U) This report serves as a tutorial on how to use object-oriented programming in LISP to program a BB by
explaining the important aspects of our radar tracking BB system. (Contd. on back)

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 2STRACT SECURITY CLASSIFICATION
A
O UNCLASSIFIED/UNLIMITED [JSAME ASRPT. {x] DTIC USERS Uneclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 225 TELEPHONE (Include Area Code) 22¢ OFFICE SYMBOL
P.R. Kersten (619)939-3124 Code 3807
83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF TH!S PAGE

DD FORM 1473, 8a MAR All other edrtions are obsolete UNCLASSIFIED

OO

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE i When Data Entered)

19. The report demonstrates how flavors (object-oriented programming in Franz is carried out via flavors) cun
be us-d for this programming. Different approaches to vhject-oriented programming share considerable
similarity, so this report should help even those readers who may not wish to use flavors.

(U) The radar tracking problem (RTP) is used as a medium to explain the concepts underlying BB
programming. The RTP is particularly amenable to BB problem solving and has the potential to control radar
resources as part of the solution. The BB database is constructed solely of flavors that act as data structures. us
well as method-bearing objects. Flavor instances form the nodes and levels of the BB. The methods associated
with these flavors form the basis of a distributed BB monitor and support the knowledge sources (KSs) in
modifying the BB data. A rule-based system is used to construct the knowiedge source activation record
(KSAR) queue, and the goal nodes form the database. The prioritized KSAR queue solves the control problem
associated with choosing the next KS. The BB is constructed in LISP with KSs in either C or LISP The

resulting program is used as a test bed for the RTP.

DTIC TAB
Unannounced m]
Justification

Accession Por
NTIS GRARI g |
d

By
Dig_g_r}._but ion/
Avallability Codss
ﬁvnii‘and/or
Specinl

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enteced!

NWC TP 7004

CONTENTS
Section 1. Introduction 3
Section 2. BB Architecture i 6
Section 3. Radar Tracking Problem 8
Section 4. Representation Problem-Flavors 11
Section 5. BlackboardinFlavors 19
Section 6. Blackboard Knowledge Sources (KS) 28
Hit Generation KS(GETBEAM), 30
AssignmentProblem L. 31
Track Formation KS(GETTRACK)ccciiiiiiinnan.. 34
Spline Interpolation KS i, 34
Segment Verify KSciiiiiiiiii 36
Merge Segments KS (MERGE-SEGMENTS) 38
Section 7. Blackboard Control i, 39
Section 8. Conclusions 52
References i i e 61
ApPendiX ... 65

ACKNOWLEDGMENT

Seth Hutchinson’s expertise in Al programming was inva'uable in the
preparation of this report. Discussions with him about design decisions
provided a sounding board that resulted in a better product.

NWC TP 7004

THE RADAR TRACKING BLACKBOARD (RTBB)

1
INTRODUCTION

Significant effort has been expended to solve the radar tracking
problem (RTP), which is defined as finding the best partition of radar
returns into disjoint time sequences that represent the trajectories of
objects in the search area. Very sophisticated algorithms already
exist to optimally map radar returns grouped by time into disjoint
object trajectories [Reference 1]. The standard representation of
these trajectories is the Kalman filter, which is an optimal model for
tracking in the presence of Gaussian noise. Each trajectory is
represented by a distinct Kalman filter. Once the radar returns have
been assigned to distinct tracks, this information is abstracted,
integrated, and evaluated to detect critical situations or make
decisions. The RTP solution is the set of all trajectories and the
inferences that can be drawn from this information. For example,
certain trajectories represent threats to safety in aun air traffic control
system. So, any tracking system must keep accurate track files for
all aircraft in the search area, and detect potentially hazardous
situations early to warn the system users.

For large search spaces, distributed problem solving is an
attractive alternative provided the search space can be partitioned in
space, time, or both; for example, space could be partitioned by a
division of azimuths and elevations. Distributed problem solving
should allow the application of a blackboard (BB) to each partition
separately. The final solution could then be synthesized by pooling
the separate solutions; pooling the solutions is usually referred to as
cooperative problem solving [Reference 2]. Therefore, the overall

NWC TP 7004

method would be divide-and-conquer, and the BB approach would
allow parallel processing to speed the solution at both local and
global levels. Ultimately, the BB solution could also include control of
the radar itself. For example, with an active array radar, where
scanning may be dynamically controlled, control of the scanning
pattern of the radar could also become part of the optimal solution,
in the sense that the BB control problem could include control of the
scanning pattern, leading to more efficient solutions to the RTP.

"The blackboard model is a relatively complex
problem-solving model prescribing the organization of
knowledge and data and the problem-solving behavior
with the overall organization.” [Reference 3, p.39]

The BB paradigm is intuitively pictured as a number of
scientists gathered around a BB and attempting to solve a difficult
problem. Each scientist works on a part of the problem, but he or
she may only communicate with other scientists by writing requests
or results on the BB. Note that BB is an acronym for the blackboard
system as well as the database associated with the system. The
context should clarify the reference. Thus, the problem solving is
coordinated only through the BB. This approach limits the degree of
cooperation but minimizes communication protocols and mis-
understandings. If scientists work on relatively disjoint parts of the
problem, this approach will maximize the degree of parallelism.

The BB approach has been used in a number of successful
systems, including Hearsay [Reference 4], HASP/SIAP [References 5
and 6], and PSEIKI [References 7 and 8]. These systems include
applications such as general problem solving [Reference 9], planning
[References 10 and 11], and image understanding [References 7, 8,
and 12]. Image understanding BBs are usually hierarchical
structures where the lower levels represent signals and/or
preprocessed data, and the higher levels represent more symbolic
information refined from the data [Reference 8]. As Nii [Reference 3]
points out, the nodes on the BB represent partial solutions to the
problem. The RTP has probably been solved using a BB, although
this information is difficult to obtain [Reference 13].

Our RTBB is constructed in LISP with knowledge sources (KSs)
written in either LISP or C. KSs solve various portions of the tracking
problem. The main BB process is constructed in LISP, and the KSs

NWC TP 7004

are either children of the main BB process or run under the BB
process. The database, BB monitor, and scheduler are all part of the
main BB process. All the processes run under the UNIX operating
system. Each level and node on the BB is a flavor instantiation.
These flavor instantiations are method-bearing data structures that
are part of Franz LISP. A method is a procedure that is invoked by a
message to a flavor instance. The method triggered depends on the
message sent and the type of flavor receiving the message. For
convenience, flavor instances are referred to as flavors, instances, or
nodes interchangeably.

The methods associated with BB nodes act as local monitors
collectively forming a distributed BB monitor, as scribes for the KSs
in updating the BB information, or as information agents for the rule-
based planner. After-methods that are written for the data nodes
trigger after a node is altered and enter the changes on the goal BB.
This implementation of the monitor using flavors is one of the more
interesting aspects of the BB design. Reported changes are mapped
to KS activations via a rule-based system whose database consists of
the nodes of the goal BB. The KS activation records (KSARs) created
by the rule-based system are prioritized, and the KSs are activated
using the priorities of the KSARs. This BB is meant only as a test bed
or a learning tool. A BB to run a real-time radar system would, of
course, require much additional system-design effort in the real-time
aspects of the problem.

Section 2 of this report gives a more detailed exposition of the
model, and describes the purpose and interaction of all the
components. Section 3 explains why the BB problem-solving method
is a natural solution paradigm for the RTP. Because flavors are
virtually the only data object in the BB, Section 4 describes those
aspects of flavors that are particularly useful. Section 5 describes
the BB system and database. Section 6 describes the KSs associated
with the BB, and Section 7 describes the control flow and scheduling
of the KSs. Section 8 contains the conclusions. Finally, the Appendix
contains examples of how the problem-solving activity is carried out
by the BB.

NWC TP 7004

2
BLACKBOARD ARCHITECTURE

This section describes general aspects of the BB solution
methodology and is based in large part on H. Penny Nii's
knowledgeable tutorials on BB systems [References 3 and 4].

The BB architecture, which emerged from the HEARSAY-II
effort, has been used by several systems [Reference 3, p. 38]. The BB
is both a problem-solving paradigm and a reasoning and control
architecture. By definition, a problem-solving model is "a scheme
for organizing reasoning steps and domain knowledge to construct a
solution to a problem" [Reference 3, p. 38]. A BB usually consists of
three parts—the global database, the KSs, and the control. The global
database is the BB and the only means of communication between
the KSs. The KSs are procedures capable of modifying the objects on
the BB and the only entities allowed to read or write on the BB. The
control is the planner that selects the next best KS to be activated;
that is, solves the control problem. This sequence of KS activations is
called opportunistic reasoning, which supposedly advances the
solution the most.

One view of a BB model is as a highly refined production
system [Reference 10, p. 297]. In fact, both the model and system
have the same three major components. A production system
consists of a global database, a set of rules, and a control. The BB
system database consists of all the data, and the partial and final
solutions to the problem. This database is also called the BB.
Corresponding to the rules are the BB KSs, which are generalized
rules capable of both logical operations and numerical procedures.
The KSs contain all the domain knowledge of the system.
Corresponding to the control is the opportunistic reasoning, which
attempts to choose the next KS to execute, based on the current state
of the BB. Ideally, the KS chosen advances the solution the most
[Reference 14].

There is a great difference between understanding the concept
of a BB model and the implementation of a BB.

"The difficulty with this description of the black-
board model is that it only outlines the organizational

NWC TP 7004

principles. For those who want to build a blackboard
system, the model does not specify how it is to be
realized as a computational entity; that is, the black-
board model is a conceptual entity, not a computational
specification. Given a problem to be solved, the black-
board model provides enough guidelines for sketching a
solution, but a sketch is a long way from a working
system.” [Reference 3, p. 29]

The BB control may be event, goal, or expectation driven. In
the RTP, the BB initially was event driven and expanded to be goal
driven. Events are changes to the BB, such as arrival or modification
of data by the KSs. In an event-driven BB, the scheduler uses the
events as the primary information source to schedule the KSs. The
goal-driven model is more refined and uses a composite mapping
from the events to goals, then from goals directly to KS activations, or
indirectly from goals to subgoals. This refinement permits a more
sophisticated planning algorithm to choose the next KS activation.
Using goals, you can bias the BB, generate other goals to fetch, or
generate other components of the solution [Reference 9]. If goals are
isomorphic to the events, the BB is essentially event driven. With
subgoaling, you can gain from the best of both event- and goal-
driven BBs.

The efficiency of a BB implementation for solving a particular
problem depends on how well the BB structure is tailored to the
problem, and how the collection of processes flows through both the
hardware and software. The performance analysis of BBs is a
neglected problem whose importance will increase as the BB moves
from research laboratories to the field [Reference 15]. Then a rush to
develop the modeling skills and simulation support to characterize
the BB response time and throughput will occur. This important
issue is only mentioned here and will not be further addressed.

BB shells, which may be excellent research tools, are emerging.
The generic BB (GBB) constructed by Corkill, et al. at the Department
of Computer and Information Science, University of Massachusetts,
Ambherst, Mass. [Reference 16], and the Ariadne-1 BB system
described by Criag [Reference 17] are two examples. The GBB is
constructed by a group whose interest includes distributed problem
solving, especially using BBs [References 9 and 16]. Thus, good BB
shells probably will be available soon for exploratory problem

NWC TP 7004

solving. However, it is doubtful you could build a BB in a real-time
environment using a general BB shell.

Description of the general form of a BB architecture is based on
the functional description given by Nii [Reference 3, pp. 43-44]. In
this description, the KSs are procedures that advance the solution of
the problem and record these advances by modifying the structures
on the BB. The BB holds the state information as data objects in a
hierarchical format, which the KSs reference and modify. The
solutions are graphs whose vertices are the flavors or data objects;
the edges are the relationships between the flavors. The control
consists of the monitor and the modules that schedule the next KS to
execute, i.e., the focus of attention.

3
RADAR TRACKING PROBLEM

The RTP is defined as finding the best partitiion of given radar
returns into disjoint time sequences that represent the trajectories of
craft or other moving objects. For aircraft flying in tight formations,
we will associate a single trajectory with each formation. [Each
trajectory, whether associated with a single aircraft or a formation,
will be called a track. Because aircraft may break away from a
formation, any single track can lead to multiple tracks. The RTP
consists of assigning a radar return to one of the existing tracks or
allowing the radar return to initiate a new track. This problem is not
new and has been solved with varying degrees of success and
implemented on numerous systems. In fact, a BB solution of the RTP
may already exist, although the solution is probably proprietary.
The fact that TRICERO has an embedded radar tracker has been
indicated [Reference 14, p. 96]. However, whether the tracker is
implemented as a BB is not clear [Reference 13]. The RTP is
particularly suited to the BB problem-solving method and is a good
pedagogical tool. Moreover, the RTP is easily sized, which means that
(1) at one end of the spectrum, a toy BB can be produced using this
problem to test and explore BB concepts, and (2) at the other end, a
lifetime could be spent constructing a distributed problem-solving
system made up of BBs designed to control and solve the RTP in
incredibly complex environments.

NWC TP 7004

However, you may ask why you should use a BB model of a
problem that presumably has been solved by other methods. The
best of several reasons is that a BB allows a large degree of
paralielism, which also fits well into a distributed problem-solving
framework. Fortunately, criteria that can be used to judge the
applicability of the BB model to the problem exist [Reference 4, pp
102-3].

The solution space consists of the data that are time-stamped
radar returns, along with all the tracks and partial tracks. This
information alone can create a large solution space, because the
number of aircraft that can be included in a large search space
around a modern airport might be very large. The radar returns
vary widely in quality. Returns may have high S/N ratio in
uncluttered backgrcunds, but may also be noisy, cluttered, and
weak. Obviously you design for the worst case, which includes noisy
and unreliable data. Noise and clutter induce track anomalies, such
as fades, splits, merges. Track formation in a noisy environment
requires not only significant signal-processing procedures, but, in
general, forward and backward reasoning at a symbolic level.

High-noise environments produce uncertain track information,
and backward reasoning can verify track information via a
hypothesis-and-test scheme. KSs used during this part of the
reasoning may require higher spatial resolution and longer signal
integration times to verify hypotheses. Expectation-, goal-, and
model-driven reasoning are possible and desirable to best choose the
next KS. So, a need to use multiple-reasoning methods e:ists. In
addition to multiple-reasoning methods, the system must also reason
simultaneously along multiple lines. For example, when track splits
occur, watching and maintaining several alternative track solutions
before modifying the track information on the BB may be desirable.
Multiple lines of reasoning can play a natural role in searching for
the optimal solution under these conditions. The last criterion
requires that the current state of track information always be
available, even though this information may be incomplete and
uncertain. Returning an answer such as "Wait—syste.. still
processing” is unacceptable. Both pilots and controllers need to see
the entire track solution evolve in real time.

NWC TP 7004

The BB lends itself to sensor fusion. When infrared sensor and
intelligence data are included with the radar data, the solution space
is both large and diverse. Intelligence information introduces model-
driven and expectation-driven aspects to the reasoning. So, a variety
of input data and a need to integrate diverse information exist. The
sensor data and the intelligence information may be independent
and may cooperate in order to confirm a track. A consistent solution
will require both independence and cooperation of the KSs.

Based on these criteria, the RTP is suited for a BB problem-
solving paradigm, and can be expanded in numerous directions to
address the complexities of actual systems. For signal-processing
environments, the RTP is an archetypical example providing a good
test of any problem-solving architecture. The RTP is also an
excellent candidate for distributed problem solving [Reference 9].
The problem, which is naturally partitioned in space, can be
cooperatively solved by multiple BBs working on each partition.

BBs can simplify software development. The BB system solves
a problem subject to the constraint that the processes are
independent enough to interact only through the BB database. This
constraint inay limit efficiency in achieving the solution, but also
tends to maximize the amount of parallel processing that can be
achieved. Another advantage of this design [Reference 4, p. 104], is
independent development. In a multisensor environment, the
information kept on the BB for tracking is in terms of coordinate
vectors and their derivatives along with signal information. This
information is not only process independent, but independent of the
data structures used. Thus, parallel development and testing can
take place in designing KSs because they are only coupled via the
database and the scheduler.

However, a high price for the maximal separation of KSs via the
BB database is overhead. For example, if no shared memory exists,
the cost of data transfer between the BB and KSs can be very high in
terms of real time, not to mention software design time. For research
and development, this may be a small price to pay. But in real-time
environments, this may not be acceptable. Also, the opportunistic
control in a BB may be ideal from a conceptual viewpoint and may
increase solution convergence; but, because opportunistic control is
difficult to model mathematically, this control may lead to
unpredictable behavior by the BB under circumstances not taken into

10

NWC TP 7004

account during the test phase of the system. In spite of these
drawbacks, BB systems inevitably will work their way into system
designs.

4
REPRESENTATION PROBLEM—FLAVORS

The representation problem is central to problem solving in
general. Implementation of a chosen representation requires
suitable data structures. In a BB, each level can have its own
representation, and consistency between levels is not necessary.
However, in this implementation, flavors have been used to
represent the data at each level of the BB and to implement the BB
itself. Several reasons for this decision exist. Flavors are versatile
data structures that are easily initialized and have built-in
constructors, selectors, and mutators. In addition, flavors are
method-bearing objects, and their methods can be used to monitor
and update the BB itself. The following paragraphs expand on the
properties of flavors, which have proved useful in this BB
implementation.

Flavors are method-bearing objects with instance variables
that may be easily redefined [Reference 18]. These instance
variables, or just variables, may be instantiated to numerical values,
symbolic values, lists, or symbolic expressions (s-expressions). Thus,
the flavor composition is appropriately tailored to the abstraction
level in the BB. In addition, very sophisticated ways of mixing
flavors exist, i.e., constructing flavors built up of other flavors. We
will extensively use before-methods and after-methods that can be
attached with a flavor. The former types of methods initiate
procedures before altering a flavor instantiation, and the latter types
after. You may note that invoking methods in sequences more
complex than implied by the names before-methods and after-
methods is possible. Only a small portion of the flavors' potential has
been tapped for this project. Some of the key properties of flavors
are described in this section.

Flavor creation is achieved via the define flavor (defflavor)
function, which defines the name and characteristics of s-expressions

11

NWC TP 7004

in the structure. Consider a track node, the highest abstraction on
the BB.

W tnode means track node -
» the flavor holding info on the track level

(defflavor tnode (
(type 'track) ; the type is track

(time 1234) ; the last timestamp in the track

last-coord ; latest position of the track

last-velocity ; latest velocity of the track

threat : true if interval straddles zero

snode ; backward pointer list to snode

cpa-bracket ; bracket about x and y

check ; spline check of segment group

checklyst) ; and list that must be checked to verify track

() ; other flavors included must be placed inside this parentheses
:gettable-instance-variables ; allows send to ask for current value
:settable-instance-variables ; allows send to set the variables

:inittable-instance-variables ; allows variables to be set at creation

)

The defflavor function is followed by a list of variables that may be
initialized in more than one way. Following these variables is a place
to mix in other flavors; finally, there are several options listed to
apply to the variables. Flavor instances may be initialized via two
simultaneous avenues. First, you can specify a default initialization
for instances of a flavor during the defflavoring function. Second,
you can initialize instance variables when the flavor instance is
created; the latter may supplement or override the default
initializations. In this example, the flavor called tnode contains eight
variables. Two of these variables take default instantiations that will
occur in every instance of the tnode flavor. The time variable will be
automatically set to 1234 and the type will be set to 'track.
However, this default initialization can be overridden at the creation
of the instance by using the flavor option :inittable-instance-variable.
Thus, for example, if the creation statement was

(setq 'track (make-instance tnode :time 2222 :threat 'true))

then the initial value of time would now be 2222 and the initial
value of threat 'true. In the latter case, the unspecified default value
of nil is changed to 'true; and, in the former case, the default value of
time, 1234, is overridden to be 2222. In the creation of abstract
data objects, data constructors, such as setq, are procedures that

12

NWC TP 7004

make data objects [Reference 19, p. 98]. So, the flavors have a simple
yet powerful set of constructors.

Flavors also have natural selectors and mutators built into their
instantiations. Selectors extract information from data objects and
mutators alter information in the data objects. Both of these
mechanisms are embedded in the send operator, which sends the
flavors (objects) messages to perform operations. Flavor operations
are optional and are declared in our example by specifying the
gettable and settable options in the instantiations. The selector gets
information by sending a message to the object with the variable
name. For example, (send track :time) will return the current
instantiation of time in the tnode flavor instance called track. The
i ,ator uses the same format, except now the variable name has
:set- prepended to it; so (send track :set-threat 'false) alters threat
variable of the track instantiation to 'false. @ The object-oriented
nature of the flavors is a real advantage for obtaining and altering
the contents of the BB nodes.

As discussed before, a most useful feature of flavors is that
they are method-bearing objects, each method being invoked by
sending a suitable message to an object. The operation in the
message and the object combine to uniquely define the procedure
that must be used to execute the method. Before- and after-methods
are executed before and after specified operations, such as :set- or
:init. Usually, these two types of methods are useful for massaging
the data received and storing information in other instance variables.
Because an after-method may be invoked after initializing or altering
critical variables in a flavor instance, such specialized methods can
report the changes to a queue or another portion of the BB. In an
event-driven BB, the changes are reported to an event queue; and, in
a goal-driven BB, the changes are reported to a buffer in the
centralized monitor or directly to the goal side of the BB. The RTBB
has been implemented as a goal-driven BB similar to that used by
Lessor and Corkill [Reference 2], so the changes are reported directly
to the goal panel or goal side of the BB.

As discussed in Section 1, before- and after-methods can be
used to implement a distributed monitor whose job is to report
changes in the BB database as goals. However, alternatives for
designing monitors do exist. For example, polling techniques, along
with change bits or variables in the flavor instantiations, could be

13

NWC TP 7004

used to create a centralized monitor. As another alternative, KSs
themselves could report all the changes to a centralized monitor,
because KSs are the only entities allowed to alter the BB. In a way,
you can think of before- and after-methods as being part of the KSs,
or as a shared utility of these KSs for reporting changes, or further
updating or altering the flavors.

The following defmethod is an example of a method that places
a node on the goal BB after the time variable is set by an after-
method.* The time variable is updated as new return information
percolates up to the track level. In this new goal node, the variable
source is set to the name of the flavor instantiation that invoked the
method. The instantiation in this case is the internal identity of the
tnode whose time change invoked the method. The variable action is
set to 'change to reflect that the goal was caused by changing the
time value, in contrast with, for example, a goal node created by
subgoaling. The variable type takes the value 'track for obvious
reasons and the variable time inherits the updated time value. The
variable threat inherits its value from the tnode that invoked the
method. The variable snode is a pointer to the snode that supports
this track node.** Finally, the variable duration is instantiated to
'one-shot, so only one attempt is made for this goal node to be
satisfied. Note that in the syntax of a defmethod, the symbolic name
following each variable, such as :snode, is the name of a variable

* The reader already familiar with RTBB may be puzzled by this
defmethod because it creates a track-level goal node from a change in the
track level on the data panel. Usually, a track-level goal node is created by the
addition of a segment on the data panel. The purpose of the goal is to merge the
segment with one of the existing tracks or to start a new track with the
segment. However, RTBB also needs facilities to create track-level goals
directly from changes in the tracks because of the need for verification and
possible subgoaling if the track is a threat, which means if the average
velocity vector representing a track is aimed directly at the origin of the
coordinate system. Verification consists of making sure that all the segments
are similar in the polynomial sense, as discussed in Section 6. When a track
fails verification, subgoals that check each segment against the average
properties of the track must be created. If found to be too different, a segment
must be released from the track and allowed to participate in the initiation of a
new track. This defmethod could lead to formation of KSARs that could produce
these subgoals.

** As will be explained in Section 5, radar retums, in the form of hits,
are grouped into segments, which are then grouped into tracks. In RTBB, each
segment is represented by a node called snode.

14

NWC TP 7004

from the flavor to which the method is attached; if the symbolic
name is quoted, the symbolic name is used directly.

this defmethod pushs a node onto the goal blackboard

bl

(defmethod (tnode :after :set-time) (value)

(sendpushgoal
(make-instance 'bbevent
:source self

:action ‘change

‘type ‘track

:time time

:threat threat

:snode snode

:duration ‘one-shot)
tracks))

The flavor instance is placed on the goal side of the BB at the track
level by the macro called sendpushgoal, which pushes a goal onto the
track level using a send message. The sendpushgoal macro is a
procedure that pushes an instance of the bbevent flavor onto the
track level of the goal panel. The macro looks as follows:

;3 this macro pushes an object onto the level on the goal BB

(defmacro sendpushgoal (object level)
“(send ,level :set-left
(push ,object (send .level :left))))

So, the set of goals on the track level of the goal BB is just a stack of
these flavor instances. This method is invoked after a change has
been made to the time variable of the track node on the data panel.
This change occurs whenever the track node is updated, and the
message that triggers this change looks something like (send
tnodeptr :set-time (list newtime)). When only one or two methods
are associated with each node type, writing one method for each
variable is a simple matter. However, as the number of variables
associated with each node on the BB increases, the coding of the
methods becomes cumbersome. Seth Hutchinson, of Purdue
University, suggested and wrote a macro to generate these methods
automatically. The following version is a modification of that macro,
which is designed for a goal-driven BB.*

* Seth Hutchinson, personal communication with Paul Kersten, 1987.

15

NWC TP 7004

This macro generates a flavor and the corresponding after-
demons which report changes of a bnode, tnode, or snode
:; to the goal panel. Thus generating the defmethods forming
;s the monitor

(defmacro newflavor (flav level var-list var-sub inher-list &rest options)
(cons ’'progn
(cons
‘(defflavor ,flav ,var-list ,inher-list ,@options)
(do*
(
(worklyst var-sub (cdr worklyst))
(op (car worklyst) (car worklyst))
(mlyst nil)

((null worklyst) (return mlyst))
(setq mlyst
(cons “(defmethod (,flav :after ,(keywordize (concat :set- op)))
(value)
(sendpushgoal
(make-instance 'bbevent
:source self
:action ‘change
type type
:variable ‘,op
:coord coord
:number number

time time
:duration ‘'one-shot
)

Jdevel))

mlyst)

N

oes
ey

In this macro, a flavor is created of type flav with variables var-list
and inheritance list inher-list, i.e., with all the variables and options
normally available with any flavor. In addition, the variables
contained in the var-sub list have update methods automatically
generated by the macro code. If any of these variables is altered, the
automatically constructed after-methods push goal nodes onto the
proper levels of the goal panel.

To construct these methods, the macro generates a program
that returns the list of methods created in the do* loop. When

16

NWC TP 7004

finished, the macro executes the progn statement constructed, which
includes creation of the flavor and associated methods that report
changes to the goal panel. Note that the macro keywordize is a
procedure used to intern the :set-op name into the keyword package
so that the flavor features of Franz recognize this operation. An
example of newflavor's use follows:

;;snode is from segment node
;:;the flavor holding info on the segment level

Yy

(newflavor snode tracks (

type ; is segment
time ; this is the time of last coord
coord ; note this is a coordinate list
number ; number of points the the segment
cpa closet point of approach a vector
linear ; (position velocity)
tnode ; ptr to a track node
threat ; true or false - updated by tnode
)
(number)

O
:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

Note that the data-segment node is set up so that when the number
of points in the segment is changed, a goal node is pushed onto the
goal side of the BB at the track level. To generate equivalent code
without this macro, you first need to define a flavor using the
defflavor function, and then add the following method.

(defmethod (snode :after :set-number) (value)
(sendpushgoal
(make-instance 'bbevent

:source seif

:action ‘'change

‘type type

:variable ‘'number

:coord coord

:number number

:itime time

:duration ‘one-shot)
tracks))

17

NwWC TP 7004

Note that some of the variables, such as source, action, do not appear
in the newflavor call, but do appear in the defmethod call. The
definition of newflavor automatically sets these variables to certain
fixed values. The newflavors macro is an illustration of the power of
macros and the ease with which an impressive array of methods in a
BB shell can be created.

At each level of the BB, the nodes are flavor instantiations.
Each level is also a flavor instantiation. For example:

;» This is the flavor which makes up the
;» levels of the blackboard hierarchy

(defflavor bblevel (

up for higher level in BB hierarchy
left ;; for the goal BB panel

right ;; for the data BB panel

down) ;; for the lower level in BB hierarchy

O
:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

The following program statements create the segment level of the BB,
and set the pointers held in the up and down variables to link the
levels to one another.

(setq segments

(make-instance ‘bblevel :down nil :left nil :right nil))
(send segments :set-up tracks) ;; links bottom level to top level
(send segments :set-down hits) ;; links top level to bottom level

The right variable, which will be instantiated to a list of data-
segment nodes is a data BB level. The left variable allows us to refer
to the corresponding levels on the goal panel. Because the variables
are allowed list instantiations, both the right and the left variables
serve as storage sites for the data and goal nodes, respectively, at
different levels of the BB—the segment level in the above example.
In effect, the lists that become instantiations for the right and left
variables act as queues or stacks of flavors, depending on their
queueing discipline. This is convenient when you wish to apply some
function on the entire set of nodes, because you may mapcar the
function onto the list that is simply obtained via (send segments
‘right) message. Figure 1 illustrates the left, right organization of the
BB; the right panel stores the data at different abstraction levels, and

18

NWC TP 7004

the left panel stores goals, again at different abstractions, for the
purpose of control. Further advantages of flavors will be more
evident in the description of the BB itself.

Although RTBB is constructed entirely of flavors, the variables
in the flavors may be instantiated to any s-expressions, such as lists.
Any list may be used as a queue or a stack. We use the word queue
in a generic sense and associate three components with it—arrival
process, queueing discipline, and service mechanism [Reference 20].
The arrival process is characterized by an interarrival-time
distribution for items stored in the queue. The service mechanism is
composed of the servers and service-time distribution; note that
multiple servers (e.g., processors) can cater to a queue. The queueing
discipline describes how an item is selected from the queue. Stored
items may be queued and waited on for service via some algorithm,
or discarded completely. Therefore, we can use the same definition
for LIFO, FIFO, or any generalized queueing system. When the type
of queueing system is important to the discussion, the system's
service discipline, like LIFO, FIFO, will be elaborated on.

5
BLACKBOARD IN FLAVORS

To design the BB system, define each of the three components—
database, KSs, and control. The database, or BB, contains all the
nodes that form the partial solutions to the RTP. Because all the data
structures are flavors, specification of the hierarchical structure of
the database and data structures should complete the BB database
definition.

This BB consists of three abstraction levels and two BBs—a data
and a goal BB. These sub-blackboards are called panels. The first-
level data nodes are called beam nodes (bnodes) or hit nodes (hits)
and are defined as follows:

19

NWC TP 7004

;; definition of hit node or beam node

(newflavor bnode nil (

type type is hit
time ; time stamp associated with coordinates
coord ; list of the coordinates assoc with time
number ; number points in the list

)

O
O

:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

Note that the newflavor macro was used to define the bnodes,
although, in this case, no methods were automatically generated
because fourth argument is an empty list. The second argument is
set to nil for the same reason. Coord is a list of four-tuples
corresponding to (t,x,y,z) coordinates of a radar return. The variable
time is the time stamp of the return, which is the integer
representing the number of time units since the system started. Unit
time intervals are usually chosen to normalize the actual system
parameters. The variable number is the actual number of distinct
returns received at the time instance that corresponds to the time
stamp. The node type is hit and specifies the abstraction level. For
this BB, hit and beam nodes are treated the same. In practice, a
beam of information is more primitive than a hit because the latter is
a time-integrated sequence of beams. Hit nodes are generated every

nth_clock cycle where presently n is set to four.

A method may be used to refine the data before reporting
changes. For example, before reporting the change to the goal BB, the
following method first calculates the number of radar returns, enters
that number in the bnode, and only then reports the change.
Alternately, number could have been set directly. This method is a
trivial illustration of the data modification capabilities of the monitor
methods.

20

NWC TP 7004

;; an after-method which first updates the number
;; of returns and then reports to the goal panel

"

(defmethod (bnode :after :init) (value)
(setq number (length coord))
(sendpushgoal

(make-instance 'bbevent
:source self

:action ‘change
‘type ‘hit
:variable ‘coord
:coord coord
:number number
time time

:duration ‘one-shot

)

segments)

)

This method would be triggered after the creation of a hit or beam
node—for example, (make-instance 'bnode :coord coord). Here the
variable coord is instantiated via the built-in methods specified by
the inittable option in the flavor definition of bnode. Note that
inclusion of "init' in the first line of the defmethod ensures that the
method would be executed on creation (or initiation) of an instance
of bnode on the data panel, and on initialization of any of the
variables in that bnode. The goal created by making an instance of
the flavor bbevent represents the desire to extend existing segments
using the data in the bnode.

Interestingly, this method alters the bnode whose creation
causes the execution of the method. The bnode is altered because
the variable number now has an instantiation equal to the length of
coord. This may seem at variance with the point made in Section 2.
In that section we said that in an ideal conceptualization of a BB
architecture, only KSs should be allowed to alter information in the
BB database. @ What we have accomplished with the method just
described is not at variance from the ideal. That aspect of the
defmethod, which updated the value of number, could have been
incorporated in the KS that created the bnode in the first place. You
can view this data-refinement aspect of methods as extensions of the
KSs or as some distributed KS. One advantage is that such methods
simplify the coding of interfaces between the BB process and the KSs.

21

NWC TP 7004

The next level of abstraction on the data panel is the segment
node (snode). Segments are defined for convenience and represent a
small number of hits (a fixed number chosen by the designer), which
can be adequately modeled as a linear segment. By fitting linear
segments to the returns, we reduce the sensitivity of the system to
noise spikes. Segments approximately colinear are grouped together
to form tracks. Tracks will be discussed later in this report. A track
will not be started unless a segment is longer than a certain
minimum number of points, usually two. In addition, the most
recent hit in a segment older than 10 time wunits is automatically
purged from the BB database. If a track consisted of only one
segment that was purged because of the time-recency requirement,
the track would also be purged. Segment nodes are defined as
follows:

(newflavor snode tracks (

type is segment
time this is the time of last coord
coord ; note this is a coordinate list
number ; number of points the the segment
cpa closet point of approach a vector
linear ; (position velocity)
tnode ; ptr to a track node
threat ; true or false - updated by tnode

)
(number); the variables that trigger a report
O

:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

Note that the variable coord is a list of coordinates associated with a
given segment and not with a given time instance, as in the beam
nodes. That is, the coordinates are grouped via spatial continuity via
temporal continuity as in bnodes. The variable time refers to the
sequence of times corresponding to the coordinate points. So, both
time and coord are stacks implemented as lists. The closest point of
approach (cpa) 1s calculated by an after-method via position and
velocity information contained in linear. The variable linear is
instantiated to a list that consists of the position and velocity
computed from the two most recent hits in the segment. Note also
that the variable cpa is instantiated to the perpendicular distance
from the origin to a straight line that is an extension of the two most
recent hits in the segment. The variable threat is true if the
instantiation of cpa falls within a small region around the origin,

22

NWC TP 7004

otherwise the t'ireat is false. The extent of this region is € times the
last-coord, and the comparison threshold is dependent on the
distance because more distant craft have greater directional
uncertainty. (This point will be explained further in the discussion
on the GETTRACK KS.) Computation of a value for cpa for a given
segment occurs when the segment node is initiated, so determination
of whether threat is true or false does not occur until a track-level
node is updated with the segment.

The highest data abstraction consists of track nodes. A track
node is the grouping of approximately collinear segments. Two
segments belong to the same track, if the following two conditions
are satisfied. First, we must have cos-1 @ > 0.9, where 6 is the angle
between the velocity vectors for the two segments. The velocity
vectors are contained in the instantiation of the variable linear for
the segment nodes. Second, the faster of the two aircraft must be
able to reach the other in one unit time. The second conaition is
necessary because we do not wish to group together segments for
aircraft flying widely separated parallel trajectories. In general, only
a single track node will exist for a single formation of aircraft, no
matter how large the formation. If a formation splits into two or
more formations, the original track splits into as many tracks. The
track nodes are defined as follows:

;v tnode is of from track node -- the flavor holding info on the track level

”"”

(defflavor tnode (

type ; the type is track
time ; the last timestamp making the track
last-coord ; latest position of the track
last-velocity ; latest velocity of the track
threat ; interval straddles zero
snode ; backward pointer list to segment node
cpa-bracket ; bracket about x and y
check ; spline check of segment group
checklyst ; and list for track verify and break

)
O
:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

The variable type is always instantiated to the atom track. The
variable time is instantiated to the time stamp of the most recent hit

23

NWC TP 7004

in any of the segments composing the track. The variable snode is a
list of pointers to the segment-level nodes supporting the track. The
variables last-coord and last-velocity are the latest average position
and velocity vector associated with the track; averaging is performed
by taking a mean of the position and velocity vectors associated with
all the segments in the track. (The position and velocity vectors for
each segment are contained in the instantiation of linear.) The
variable threat is instantiated to t (for true) through an after-method
by taking a disjunction of the threat values of all the segments in the
track. The variable cpa-bracket is equal to the intervals along x and
y, each interval being the union the cpa intervals associate with the
segments in the track. If threat is set to t, a goal node is deposited at
the track level whose job is to conduct a spline check of each
segment in the track to confirm that the grouping of segments is
coherent. Coherence is measured by the similarity of polynomial
coefficients associated with fitting splines to the segments; this work
is done by GETSPLINE KS. If the grouping of the segments is
coherent, the variable check in the tnode in the database is set to t; if
not, check is set to 'fail. Setting check to 'fail causes the formation of
another track-level goal node at the next update of the tnode. This
goal node is recognized by the rule-based planner, which deposits
many subgoals for alternative grouping of the segments into possibly
multiple tracks.

The abstractions for the goal nodes are identical to the
abstractions for the data nodes, as shown in Figure 1. Nodes on the
goal panel are used by the rule-based planner and the scheduler to
focus attention of the BB. The goal nodes are used to create
knowledge source activation records (KSARs), which are placed in a
priority queueing system. The KSARs and the KSAR queue are
flavors themselves.

The goal nodes are defined as flavor instances built up as
mixtures of two flavors. The main flavor bbevent is mixed with the
flavor goal-attributes, which contains duration and position
attributes for the goal nodes. Duration refers to the length of time
the goal is allowed to stay on the BB. For example, a one-shot
duration means there is only one opportunity for the planner to test
a node against the rules to see if the node matches any of the
antecedents; if the match fails, the goal node is discarded. Most goal
nodes are of one-shot type; for example, the goal to update a tnode
with new segments. Only one KSAR for this goal node, which

24

NWC TP 7004

contains a pointer to the segment used for updating, will ever be
formed by the rule-based planner. The goal node is purged as soon
as the KSAR is formed. Therefore, if this KSAR fails to satisfy the
goal node, the goal node will not be there to re-attempt updating of
the tnode with the same segment.

In addition to the one-shot type, RTBB also contains a recurrent
goal node. A recurrent goal node is disabled after it satisfies the
antecedent of specific rules, and is re-enabled after a KS is fired from
the subsequently generated KSAR. Recurrent goal nodes are never
removed from the BB, so they act much like synapses that have a
latency period before they may be fired again. The job of the
recurrent goal node currently in RTBB is to locate old segments,
which are segments whose most recent returns are between 3- and
10-time-units old, and attempt to join these segments with more
recent segments. Suppose the database at the segment level contains
a snode composed of the following bnodes (blj, , blp), and the
time stamp of bl is 5, of blp 6, and so on. Also, assume another
snode exists that is made up of (b21, b27, b23) where the time stamp
of b23 is 3. Then the job of the recurrent goal node is to merge the
two segments, because the time stamp of b23 is so close to that of
bli. The actual merging, carried out by the MERGE-SEGMENTS KS,
will only take place if the extension of the b2 segment to the time
instant corresponding to the beginning of the bl segment is within
an acceptable circle.*

The goal nodes at all three levels are created by making
instances of the following bbevent flavor mixed with the goal-
attribute flavor. Note the important distinction between the data
and the goal panels. On the data side is a separate flavor for each
abstraction level, but on the goal side a single flavor is used. The
reason for this difference is that the goal nodes at all the levels form
a database for the rule-based planner; therefore, their similarity is a
convenience.

* In this explanation, a snode was shown as a list of bnodes. In actual
practice, a snode is a list of coordinates and associated time stamps of the
bnodes that form the snode. The actual bnodes are discarded as soon as these
returns are assigned to prevent them from »‘verwhelming the BB database.

25

NWC TP 7004

;» The goal node flavor called bbevent which is the basic
;s goal blackboard node.
(defflavor bbevent (

source ; generating node
action level this event affects
type ; hit or track etc
variable ; this is wvariable triggering event
time : may be list or number
coord ; list of coordinates
number ; number of coordinates
threat ; for tnodes
snode ; pointers to snodes
pattern ; this is list used for pattern match
)
(goal-attributes) ; mixed in flavor

:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

;s The mixed in flavor representing the goal node attributes.

(defflavor
goal-attributes (

duration ; time latency of the goal node
position ; position relative to coord
goalptr ; pointer to other goal nodes
conditions ; preconditions to fire
ksarptr ; pointer to ksar which is queued
)

O

:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

For those goal nodes created by after-methods executed in response
to new entries on the data panel, the variable source is instantiated
to the internal identity of the data-panel node. On the other hand,
when a goal node is created by the subgoaling process, source is
instantiated to the internal identity of the tnode that caused
subgoaling to take place. The variable action is usually instantiated
to ‘change, as can be seen in the definition of newflavor, to reflect the
fact that a goal node was created by a change in the data panel. The
variable type is set to the level at which the goal node is created,
meaning that tfype is instantiated to either hit, segment, or track. The
variable variable is instantiated to the name of the variable for
which newflavor creates an after-method for reporting to the goal
panel; this can be seen in the definition of newflavor in Section 4.
The variable time is the time stamp of the data-panel node that

26

NWC TP 7004

triggered the formation of the goal node. If a goal node is initiated
by an snode, then time would be instantiated to a list of time stamps
of the hits constituting the snode. If a track-level goal node is
initiated by a tnode, then rime is set to a single value that is the
latest time stamp associated with the track. For a goal node at the
segment level, the variable coord is instantiated to the list of
coordinates of the hits to be assigned to segments. When a track-
level goal node is launched by a tnode, then coord is left
uninstantiated. For segment-level goal nodes, number is set to the
number of hits in the radar return yet to be assigned; for track-level
goal nodes, number is left uninstantiated. The instantiation for
threat takes place by mechanisms explained earlier; basically, this
variable would be set to t or nil. The variable pattern is not used at
this time.

In the flavor goal-attributes, the variable duration indicates
whether the goal node is one-shot or recurrent; flavor instantiations
are therefore 'one-shot or 'recurrent. The next three variables are
not being used at this time but have been included for possible
future use. The variable ksarptr is left uninstantiated for one-shot
goals, but is instantiated for the recurrent goal to the internal
identity of the KSAR generated by the goal node. While ksarptr
maintains this instantiation, the recurrent goal node is inhibited from
launching another KSAR. The instantiation of ksarptr is reset to nil
by termination of the execution of MERGE-SEGMENT KS.

Now that you are familiar with the organization of RTBB, we
will reiterate, hopefully in a more precise manner, the overall
method for solution formation. All the radar returns or hits
generated on a scan of the search space are given the same time
stamp. The list of hits occurring in one scan are contained in a flavor
on the hit level of the data panel shown in Figure 1. A new list of
hits triggers the distributed monitor to place a goal node on the
segment level of the goal panel. This goal node represents a desire
or request to use the new list of hits to update existing segments. If
no existing segment can be found to match a particular hit, a new
segment is started with the new hit.

The segment nodes on the data panel are supported by the hit
nodes. The segment nodes are, in turn, grouped into track nodes. To
drive the segment nodes to a higher abstraction level, or to push
segments into tracks, you need to express this desire by establishing

27

NWC TP 7004

goal nodes at the track level of the goal panel. These goals point to
segment nodes that need to extend existing tracks or establish new
tracks. Tracks are not established from segments unless the
segments are at least 2 points long. (Any length threshold may be
chosen because this is a constant parameter). A track may be
thought of as an extended segment with the segments providing
some buffering against spurious noise, which results in false segment
starts. However, a track is more than an extended segment. A track
may represent many segments, so that if several aircraft are in tight
formation, these aircraft would be represented as one track, with the
track characterized by an average position and velocity vector.

To process a track goal, a KSAR is generated via the nodes on
the track level of the goal panel. The KSAR generation is
accomplished via the rule base when rule 3 is fired. This rule
requires that the node be of type 'segment, have more than one data
point, and have an action variable instantiated to 'change. If all
these antecedents are satisfied, then the create-ksar function is
called, and a KSAR is created to extend a segment into a track or
extend and update an existing track. The function create-ksar uses
the information in the goal node to select the correct flavor
instantiation for the KSAR. Figure 2 summarizes both the BB nodes
and the KSs.

In general, a goal can only be achieved by activating a KS via a
KSAR. So, a goal node must activate a KS directly via an appropriate
KSAR or indirectly through subgoals generated from the goal. The
priority of the KSAR generated by a goal node will determine the
position of the KSAR in the KSAR queue. This queue is a complicated
cyclic-priority queueing system, which determines the order in
which the KSs are activated. However, in general, the higher the data
abstraction on the BB, the higher the priority.

6
BLACKBOARD KNOWLEDGE SOURCES

Six KSs are part of the goal-driven BB. Each KS is a specialist
solving a small portion of the problem, and each concentrates on a BB

28

NWC TP 7004

object. The following is a list of these KSs and a short description of
their purpose.

1. Hit Generation (GETBEAM)—This KS is written in C and
simulates the trajectories for various aircraft.

2. Assignment (GETASSIGNMENT)—This KS assigns radar
returns grouped by time stamp to returns grouped by proximity in
coordinate spacc (a mapping from a time grouping to a spacial
grouping).

3. Track Formation (GETTRACK)—This KS groups segments or
linear fits by average trajectory, i.e., segments that are close in both
coordinate and velocity space.

4. Spline Formation (GETSPLINE)—This KS checks the track
groupings by testing to see if the trajectories are close in a poly-
nomial representation space defined by the splines. To do this
testing the BB must chain down the solution tree to construct the
spline coefficients.

5. Verify Tracks (VERIFY)—This KS is used to verify a track
that still matches a particular segment after the spline-formation KS
has failed a track, indicating the segments are no longer consistent.

6. Merge Segments (MERGE-SEGMENTS)—This KS detects
moderate-length gaps in the trajectory data, and then attempts to
extend the older segments to the appropriate current segments. The
KS attempts to match faded signal segments with newly emerging
tracks, creating a longer and more established track.

Overall, the hit generation KS drives the BB with radar return
samples. The assignment KS maps these samples into linear
approximations of trajectories, and the track formation KS further
groups these linear segments. The spline formation KS checks that
the final trajectory grouping makes sense. The verify track KS
breaks out tracks that fail the spline-grouping test. The BB will
reform the track groups later. The spline formation and verify track
KSs constitute a backward type of reasoning. Lastly, the extend
segments KS attempts to maintain track continuity of weak or fading
trajectories. = These KSs are explained in further detail in the
following paragraphs.

29

NWC TP 7004
HIT GENERATION KS (GETBEAM)

This KS, written in C, uses Pratt and Faux's version [Reference
21] of Bezier's curves to determine trajectories for the hypothetical
aircraft. In Bezier's curves, the trajectory is determined by a
trapezoid formed from four vectors. These vectors are used to form
a 4x3 matrix, which stores the vectors for different paths. Every
time the program is initiated—when the BB KSAR runs GETBEAM—the
program generates a set of coordinates, one for each trajectory. This
program is easily generalized to include an arbitrary number of
objects. In fact, several other versions are used to drive the BB
under various scenarios.

The equation used by GETBEAM to generate the Bezier
UNISURF curves is a single-vector equation that is a cubic in the
parameter u. This real parameter u is a normalized time parameter,
defined so that 0 < u < 1. The equation is given by

r(u) = (1 - u)3rg + 3u(l - u)2r; + 3u2(l-u)ar + udr3

The generation of the trajectories occurs in another process,
which runs the C program called testpath.c. This program is
compiled, and its executable file is used via the *process command to
interact with the BB. Whenever the nth-clock event occurs
(currently n = 4), a goal node is pushed onto the hits level of the goal
panel. A KSAR, formed directly from this goal, activates this process
using a command (GETBEAM), and the C program generates the next
trajectory point. The step size of the trajectory is controlled via the
step size of u, which is stored as a constant within the C program.
Thus, for each set of aircraft trajectories, you need another C
program to drive the BB- system. Presently, several versions of these
trajectories have been created with two or three targets to test
various scenarios.

In an actual application, data would be buffered and the KS
would probably handle batches of radar returns. From a queueing
systems point-of-view, the returns represent arrivals from an
infinite source. In this system, you have finite sources because the
data are pot allowed to enter the system until a command is issued
to fire the data source. The difference is recognized but ignored
because modeling of data sources is a secondary consideration. That

30

NWC TP 7004

is, the internal data flow, not the arrival process, is the interesting
process.

ASSIGNMENT PROBLEM

This KS takes the coordinates given by the hit nodes and uses
these new radar returns to extend tracks. Thus, the KS solves the
assignment problem by taking a fixed number of returns, say m, and
matching them to n-fixed segments. The returns for a given time
stamp are stored in hit-flavor instantiations on the hit level, and
elementary tracks called segments are stored as segment-flavor
instantiations on the segment level. Segments may be thought of as
localized linear approximations to longer tracks. The segments are
used to extend tracks, which are groups of segments. In practice,
updates would be accomplished using a Kalman filter.

In this KS, the branch-and-bound procedure is used to solve
the assignment problem. The branch-and-bound is in many ways
the same as the best-first search procedure. To solve the problem,
you must first limit the scope of the problem. The assignment
problem is an essential part of a tracking problem. Samples are
received from scans of the radar antenna system and are assumed to
be received at the same instant. These samples must do one of the
following:

Extend an existing track
Start a new track

Split an existing track
Merge two existing tracks
Terminate an existing track

N

The first two cases are handled by the GETBEAM KS. Cases three and
four are handled by separate KSs, and case five is handled directly
by the rule-base planner. All these cases are handled by the BB,
except case two. The general problem is very difficult because of all
the subcases. The basic cases are dependent on the relative number
of data samples and established tracks, i.e., more data samples, the
number of data samples, or fewer data samples than established
tracks. When the same number of data samples and tracks exist, the
assignment problem is the classic problem of assigning a number of
jobs to the same number of employees. When more data points than

31

NWC TP 7004

tracks exist, the unmatched data point must start a new track. And
when more tracks than data points exist, one of the tracks is not
updated. All of these cases are handled.

The problem is best restated by using graph theory .hen the
number of segments and columns are the same. Start with a
bipartite graph with n vertices in one partition of the vertices, say X,
and m vertices in the other partition, say Y. Seek to pair the vertices
in X to vertices in Y. That is, establish a perfect match in the
bipartite graph. The cost of connecting vertex i of X with vertex j of
Y is denoted C(i,j), and this matrix of costs forms the starting point of
the branch-and-bound problem. The costs contained in C, for our
case, are the Euclidean distance between the sample coordinate and
the established track because the X vertices are associated with the
new sample coordinates, and the Y vertices are associated with the
established tracks. In terms of matrices, the problem can be restated
as choosing one row for each column without repeating a row or a
column. So for each row chosen, cross out that row and the column,
and then do the same for each submatrix that results.

Figure 3 illustrates the complete bipartite graph for four hits
and four segments. Note that the branch-and-bound algorithm
avoids a breadth first search or total enumeration of all the paths in
this graph, so the exponential complexity is avoided in most practical
problems. The heuristic used is the distance or cost between the
points. Figure 3a illustrates the typical case if the paths used the
Kalman Filter confidence regions for the established tracts, and used
highest probability as a measure to determine track matches when
90% ellipsoids overlapped.

The branch-and-bound problem can best be described when
the number of solutions is countable—as in the case where the
number of possible solutions is n!/(n - m)!, n > m. That you are
trying to minimize a functional on the space is assumed. Branching
corresponds to partitioning the solution space into subspaces for
which a known lower bound can be calculated. This lower bound
need not be a feasible solution. An upper bound on the solution is
needed as well, and any feasible solution will serve an upper bound.
The branch-and-bound procedure uses these bounds to truncate the
search procedure for the solution. If the lower bound on any
subspace exceeds the upper bound, the solution of the minimization
problem is not in that subset. So, branch or subspace is eliminated

32

NWC TP 7004

from the possible solution space. Partitioning or branching is
continued until an optimal solution is achieved. The upper bound
can be lowered at any stage, if lower feasible solutions are found
enroute to the optimal solution. The branch-and-bound procedure
used in this BB is found in Reference 22.

A method of implementing this procedure is the best-first
search for the assignment problem. In this case, the branching is the
same as expanding each node using its children. The evaluation
function is f = g + h, where g = g* = the cumulative distance in the
assignments between the established paths and the corresponding
samples associated with those established tracks. The heuristic h is
an admissible heuristic that is formed by summing the minimum of
each column of the remaining submatrix constructed from the partial
solution of assignments made so far. This value h is a lower bound
on the actual distance and, in fact, may not be feasible. Moreover,
the heuristic obeys the monotone restriction. If m is any child of n,
h(n) - h(m) is the minimum of the first column in the resulting
submatrix created by choosing n as the last vertex of the partial
path. Because C(n,m) is a member of that first column, then C(n,m) 2
h(n) - h(m) and is the only requirement for the heuristic to obey the
monotone restriction.

The expansion of the children at each node is the difference of
the set 1, 2 , .., n and the vertices making up the partial solution.
With this latter definition, the branch-and-bound problem is seen to
be an A* search, which is a special case of the graphsearch procedure
described by Nilsson [Reference 23]. To speed truncation of the
search tree at each node expansion, a simple, feasible path extension
of the partial solution is made to see if the upper bound can be
lowered. If f, for a given node, exceeds this upper bound, the graph
is pruned at this node.

The best-first procedure, which is developed by Winston in his
LISP book [Reference 19], forms the basis for this procedure with the
appropriate modifications to truncate the search using the upper
bound and revision of the upper bound at each node expansion.

33

NWC TP 7004
TRACK FORMATION KS (GETTRACK)

This program takes the segments, or local linear fits, groups
them, and represents the group by an average trajectory, provided
the tracks are close in coordinate and velocity space. Close in
coordinate space means within one time unit of travel for the fastest
aircraft. That is, if the fastest aircraft turned directly toward the
other aircraft, would the fastest aircraft intersect the other aircraft
within one time unit. The velocity vectors are close if they are
parallel or nearly so (i.e., the cosine of the angle is greater than 0.9).
Other conditions may be added to ensure that the velocity vectors
are more similar. This KS, called GETTRACK, is written in LISP and
compiled using the Liszt compiler.

The track KS evaluates the threat of a track to the region near
the origin. This KS may be thought of as a threat-assessment
algorithm that, for example, calculates the threat to the airport traffic
pattern. The two quantities needed for this algorithm are the
current position and the cpa of the aircraft, both variables defined in
tnode flavor. An error vector is formed from the difference between
the cpa and the current position, that is, S(cpa - r) where S = 0.1.
This error vector allows a confidence region to be formed at the
origin for the cpa of the aircraft. If that confidence region includes
the origin, then the aircraft is a threat.

The KS returns the threat assessment and the confidence
region, which is stored in the threat flavor instance. Actually, placing
more of the entire updating of the threat nodes in the KS, which is
external to the BB process, would be better. To do this, however,
would require passing a large number of variables or passing entire
flavors. Moreover, the KS would have to access more information on
the BB itself. In short, the interprocess communication interface
would need upgrading, and the control loop would need a finer grain
so that other processes could be executed while this information was
passed back and forth.

SPLINE INTERPOLATION KS

This program, based on a spline routine in Reference 24,
obtains a polynomial expression for the track between sample points
based on the coordinates and time stamps held in the segment nodes.

34

NWC TP 7004

The coefficients of the polynomial may then be compared to
determine the fit of the tracks to each other. This KS is used in a
hypothesize-and-test reasoning method to verify the track grouping
of segments used in the track nodes.

The spline interpolation KS in this BB is a C program, which is
designed to obtain a cubic fit to the trajectory data. The sample
trajectories are generated by another KS and are obviously known.
However, the point of this program is to assume that the analytic
form of the trajectories are not known. To test that two aircraft are
in formation, obtain a spline fit for the trajectories, and compare the
coefficients of the polynomial fit represented by the splines. You are
testing to see if the segments are close in a polynomial represen-
tation space. Although you may question whether this is the optimal
space to measure the closeness of the shapes of trajectories, that
doubt is not the point of constructing another representation.

The purpose of the splines is to test a reasoning method other
than forward chaining. The spline routine is used in a hypothesize-
and-test reasoning step, which in this form is not used to advance
the solution, but verify that the conclusions are still valid by
checking. The hypothesis is that a formation has been detected. In
practice, the detection of a bundle of trajectories is a far more
complex problem than modeled in this BB. To avoid getting side-
tracked, detailed modeling of detection and estimation programs are
ignored.

The spline program is based on the version given in Reference
24, which is in FORTRAN and has been converted to C. These are
cubic splines, and the following discussion of the splines is based on
Reference 24, Chapter 4. For a three-dimensional curve, we used
three one-dimensional cubic splines.

The spline used here is based on the parameter u, which is the
parameter ue S[0,1]. What is nice about this approach [Reference 24]
is that the authors define the parameters so that the spline s(u) is
expressed as the sum of a linear interpolation and a cubic correction.
In particular, define h; = uj+1 -uj and w as the relative displacement
between the uj+1 and u;, that is, w = (u - uj)/hj and w = 1 - w. Now,
the cubic spline is represented by the equation

35

NWC TP 7004

s(u) = wyij+1 + Wyi + h2i[(w3 - W)ois1 + (W3 - w)ai]

where y; and yj+1 are the function values for u; and uj+1,
respectively. Notice that the last term is a third-order correction to
the linear interpolation, and this correction is zero at both end points
of the interval [uj ,uj+1], respectively.

The spline used in this system is a natural spline, meaning that
s"(ug) = s"(up-1) = O and the continuity conditions at the knots yield a
set of simultaneous equations that are tridiagonal. Solving the
simultaneous equations yields the coefficients in the cubic fit given
by

s(u) = yj + bi(u - uj) +ci(u - uj)2 + di(u - u;)3
ui<u<ujy for i=0,...,n-1.

These coefficients are then compared to test the cubic fit of the
trajectories of these aircraft. Thus, these coefficients will test not
only position and velocity but also the higher-order path coefficients.
This fit uses the sum of the absolute errors in these coefficients to
test the null hypothesis that the trajectories are the same, i.e., the
aircraft are in formation. This problem is singular because there is
no noise in the system. A statistical version of this problem may be
far more complex, because the statistics of the coefficients may not
be easily derivable in terms of the statistics of the radar returns.

SEGMENT VERIFY KS

This KS, which is part of the BB process, merely examines each
segment composing the current track to determine if the initial
formation condition is satisfied. The examination is done by
subgoaling. One subgoal is generated for each segment node by the
rule base, then the BB checks each of these goals to verify that the
segment is still within the track. If the track does not pass the
verification test, the pointers to the segment from the track and vice
versa are removed, and the BB reforms the tracks at a later time.

The test conditions are the same conditions needed to form the

tracks in the first place, except that you are not comparing segment
to segment but segment to track. The current position must be

36

NWC TP 7004

within 1-second travel of the maximum velocity aircraft. In
addition, the angle © between the trajectories must have cosine-l 6 >
0.9. The test is basically an AND tree, which means the track will not
be totally verified until all the children have been verified. During
this verification period, the spline back-tracking algorithm, which
initially detected the improper grouping of segments, is suspended.
This suspension is accomplished by marking the track node check
variable as failed, and having the spline goal node check that
condition before the spline KS is fired.

Subgoaling is accomplished directly from the rules. In
particular, the rule looks as follows:

;7 This rule generates the subgoals needed to check tracks
(setq rule2a
"(rule spline-check-failed-generate-subgoals
(if
(and
(equal (send gnode :type) 'track)
(equal (send gnode :threat) t)
(equal (send (send gnode :source) :check) 'failed)))
3 mmememeee- generate subgoals ------c--ccoocoooeoo-
(then
(progn
(create-subgoals-to-break-track (send gnode :sourcc))
(format t "~% 2A 2a 2a 2a 2a 2a 2a 2a 2a FIRED ")
(format t "~% $33$$ rule spline-check-failed==> generate subgoals $3$$3")

)
)))

If a track node fails the spline check and the track is a threat, then
subgoals are created. These subgoals are placed on the goal panel
and mapped into KSARs with a high priority. During the verification
of segments to this track, the segments are not prevented from being
updated. The verification test for the track and segments is always
updated to a common time so that time differences are properly
normalized.

To implement the AND feature of the track node, a separate
variable called checklyst is kept in the track node. If a track node
fails its spline test, then the segment-node list is copied into the
checklyst. As each verify-track KS is run, the last step is to remove
the segment-node pointer from this checklyst. If this KS fails to
reverify that the segment node should be part of the track, the KS

37

NWC TP 7004

also removes the pointer from the segment-node list. An after-
method is used to update the status of the track node only when the
checklyst is changed back to nil. At that point, if the segment-node
list is empty, the track node is removed from the data panel because
the track node has no supporting hypotheses or segments.
Otherwise, the check variable is reset to nil so that the spline back-
chaining track check is enabled again.

This KS is written in LISP and is part of the BB process that
avoids the transmittal of flavors across process boundary. The
important point of this KS is that it breaks established tracks and
uses subgoaling.

MERGE SEGMENTS KS (MERGE-SEGMENTS)

When radar signals fade, a segment and track will atrophy and
eventually be removed from the BB. If the track reappears later, the
track will be started as a new segment and then as a new track. The
time lapse between disappearance and reappearance determines
how the BB handles the problem. If the fade is sufficiently long, the
original track is purged from the BB and the reappearing trajectory is
handled as a new track. Between these two extremes the MERGE-
SEGMENTS KS attempts to match given segments with established
tracks.

The merge-segment algorithm is not commutative, because the
algorithm extends the segments in a prescribed order and does not
check all possible combinations of atrophied segments with estab-
lished segments. The time window used as a precondition to this KS
looks at the time since the last update. If this time is less than 10
but greater than three time units, a merge of the two segments is
attempted. If a segment is eligible, the segment is extended in time
and space, and its predicted position is matched against the estab-
lished tracks to determine if the segment was the parent of the exist-
ing segment. The match is probabilistic in nature. A match occurs if
the extended segment is inside the 0.67 percentile of the start point
of the second segment. The confidence region uses an exponential
distribution on the absolute difference of the position vectors
| x-y | with a mean of one-half the velocity magnitude.
"ntuitively, the mean is half the distance traveled in one time unit as
predicted by the linear model of the faded segment. Use the tail of

38

NWC TP 7004

the exponential distribution to form the confidence region. If
D=|x-y | is greater than a threshold c, then the match is rejected.
The threshold is determined by the condition that P(D > ¢) = 1/3,
where P(X > d) = exp (-d/mean).

The MERGE-SEGMENTS KS is implemented within the BB
process itself because the KS requires extensive access to the data
nodes on the BB. If shared memory was available on the BB, you
could implement the KS as a separate process. However, data
transfer across the BB/KS interface is too great. Access to all the
segment nodes is essential because there are several inquiries for
each established segment node to implement the best match for the
faded segment.

The goal-driven BB uses a recurrent goal node to monitor and
schedule the MERGE-SEGMENTS KS. The MERGE-SEGMENTS goal is
permanently placed on the goal BB. When segments satisfy the rule
to activate the MERGE-SEGMENTS KS, a pointer in the KS goal is
established to the generated KSAR. This pointer also acts as a flag
inhibiting any further activation of the KS because the pointer's
presence is checked by the rule base. Once the KS is activated and
completed, the flag is removed and the rule base can satisfy the goal
again. The name recurrent is derived from the definition of an
alternating recurrent process in Stochastic processes. The on-off
history of a light switch is an example of an alternating recurrent
process. This implementation was chosen because it tends to run the
MERGE-SEGMENTS KS on a continuing basis at a low priority and
illustrates the flexibility of a goal-driven BB as both data and
expectation driven. Example 4 in the Appendix demonstrates how
the MERGE-SEGMENTS KS can handle short signal fades.

7
BLACKBOARD CONTROL

Control of the BB is opportunistic in nature, i.e., chooses the KS
that most advances the solution. However, design of the optimum
choice is ultimately the product of the programmer, who presumably
has an understanding of the application domain. Each of these
events is mapped into goal nodes, which in turn are mapped into

39

NWC TP 7004

subgoals or activation records, and these structures are queued in
the KSAR queue. The KSAR queue is a priority queue, and the
priorities are the mechanism employed to choose the next KS
activation,

A brief description of possible approaches to the represention
and processing of KSAR queues follows. At the end of this section is
a discussion of the current implementation of the KSAR queueing
system in RTBB. Ideally, KSAR priorities should be dynamically
determined by the threat the aircraft presents to the airspace, which
is represented by origin of the coordinate system. For dynamic
prioritization, the planner must contain rules for assessing the
relative severity and immediacy of a threat. Futhermore, scheduling
of the threatening tnodes must allow other goal nodes in the system
to be serviced often enough so that future threats will not be
ignored. Evidently, designing a planner and scheduler for such
dynamic prioritization is a complex task and is not addressed in
RTBB. A simpler approach to KSAR prioritization was chosen. The
virtue of this approach is that the main BB process forks off KS
computations, while the main process attends to other chores. To
accomplish KSAR prioritization in RTBB, make a separate KSAR queue
for each KS and then visit each queue, implemented with a FIFO
access discipline, in a cyclic fashion, as shown in Figure 4a. The main
consequence of this prioritization is that every goal node gets equal
priority through its KSAR. In other words, the priority accorded a
goal node does not depend on its abstraction level, as is the case with
some other systems. This statement may appear excessively
simplistic, but we felt that not enough knowledge was available
about the RTP at this time for a more sophisticated approach.

The rule-based planner for mapping goal nodes into KSARs is a
forward-chaining system and is based, in part, on the forward-
chaining system in Reference 19. An example of a rule from the
planner follows:

40

NwWC TP 7004

;3 Rule § creates a KSAR for invoking the MERGE-SEGMENTS KS if
;s appropriate conditions are satisfied by the goal node.

(setq rule$
'(rule merge-segments
(if
(and
(equal (send gnode :type) 'extend-segments) ; is it a purge node
(null (send gnode :ksarptr)) ; no extend segment ksar active
(setq rvarl (find-oldest-segment))
(setq rvar3 (find-most-recently-started-segment-with-length-gt-y
(setq rvar2 (abs (diff (car (send rvarl :time))
(car (last (send rvar3 :time))))))
(and (> rvar2 3) (<= rvar2 10)) ; is age of proper range

)

;3 --- rule attempts to patch fades in signal ---

(then

(progn ; this creates ksar and sets ksarptr to that ksar

(send gnode :set-ksarptr (create-segment-merge-ksar gnode))

(format t "~% 5555555 CLOCK ~a 55555555555555555555 " clock)

(format t "~%$$$$$ rule 5--- MERGE-SEGMENTS --- fired $3$$3%")
N))

This rule states that

IF—the goal node is of type extend-segments, and no
KSARs are fired from this rule, and the difference
between the end time of a segment and the start time
of another segment is between three and 10 time
units,

THEN—create a KSAR to merge the two segments.

Note that this rule is disabled by the send gnode statement in the
consequent of the rule by assigning the ksarptr to point to the
generated KSAR, because the ksarptr must be nil to fire the rule. The
format statements are merely to print out a history file on a BB run.
The first format statement will print out a line such as "555555
CLOCK 7 5555555555", indicating that rule 5 was fired at clock time
7. The second format statement would similarly print out "$3$$$$
rule 5 -- MERGE-SEGMENTS -- fired $$$$$$" on a new line.

The above rule creates a KSAR by a call to create-merge-
segment-ksar function, which simply makes an instance of the KSAR
flavor and then pushes this instance into the KSAR queue. This
function is fairly easy and is shown as follows:

41

1))

NWC TP 7004

.e
(2]

;; This function creates the merge-segments ksar

(defun create-merge-segment-ksar (gnode)

(sendksarpush
(make-instance ‘ksar
:priority 1
:ksar-id 'merge

ks nil

:boot '(merge-segments)
:cycle clock
:context gnode

)
ksarq)
)

The following is an example of a KSAR created by a call to the above
function.
;3 An example of KSAR that secks to invoke which MERGE-SEGMENTS KS

<ksar 1074948> is an instance of flavor ksar with instance variables:

priority: 1

ksar-id: extension

ks: nil

cycle: 40

trigger: nil

context: <bbevent 1071572>
preconditions: nil

boot: (merge-segments)
nodeptr: nil

channel: nil

messenger: nil

command: nil

arglyst: nil

anslyst: nil

preboot: nil

prelyst: nil

This KSAR is constructed by making an instance of the following
flavor with the mixin ks-protocol, whose purpose should become
clear when distributed KSARs are discussed.

42

NWC TP 7004

(defflavor ksar (

priority ;; statis priority now

ksar-id ;; used at present

ks 5 ks to be fired

cycle cycle created trigger

context ;; arguments to the function boot

preconditions ;; undefined for now

boot ;; the function call for the ks

nodeptr ;; can point to any node

channel ;; ~ nil no transmission, -1 ready-to-read,
;» 1 ready-to-write

messenger ; the i/o handler for this ksar

(ks-protocol)
:gettable-instance-variables
:settable-instance-variables
:inittable-inst. nce-variables)

In the above KSAR, the variable priority needs some explanation. As
stated earlier, a separate KSAR queue created for each KS was our
goal in this research project, but this goal has not been fully
achieved. At this time in RTBB, we have separate KSAR queues only
for the distributed KSARs, those corresponding to the GETBEAM and
GETASSIGNMENT KSs. The queue for the GETBEAM KS is called
beam-queue, and the queue for the GETASSIGNMENT KS is called
assign-queue. All the atomic KSARs are enqueued separately; this
queue is called the atomic-queue. While the beam-queue and the
assign-queue are FIFO, as they should be, imposing the same
queueing discipline on the atomic-queue would be unreasonable.
The instantiation of the variable priority reflects the priority that
should be accorded to the KSAR shown in the atomic-queue.

The variable ksar-id is instantiated to a symbol that reflects
the general activity of the KS invoked by the KSAR—in this case the
activity is 'merge. The variable KS is usually instantiated to the
previous activity that results in a data node. Addition of a data node
to the data panel gives rise to the goal node, which leads to the
present KSAR. Note that both these variables are not important to
the processing of KSARs and have not been used in a consistent
manner.

The variable cycle is instantiated to the clock time at which the
KSAR was created. The variable trigger is not important to KSAR
processing and should be ignored. The variable context is
instantiated to the pertinent aspects of the context at the time of the
KSAR creation. The instantiation for this variable can be as simple as

43

NWC TP 7004

just the internal identity of the bbevent that caused the creation of
the KSAR; or, in other cases, can include the latest time associated
with an snode, the number of hits of which the snode is composed,
etc.

The variable preconditions is not used at this time. Perhaps
this variable could be used at a future date to ascertain if the
conditions ‘that give rise to the KSAR are still valid at the time the KS
is fired. For such usage, preconditions are set to the minimum
conditions to fire the KS to satisfy the goal node that gives rise to the
KSAR.

The variable boot is important and is instantiated to the name
of the KS that the KSAR must invoke. The KS is invoked by making a
function call composed of the name of the KS, followed by
appropriate arguments. The variable nodeptr is set to the internal
identity of the goal node that gave rise to the KSAR. Other variables
in this KSAR will be explained later in this section.

When a KSAR of the type mentioned above is selected and its
corresponding KS executed,. then control resides completely in the KS
during the KS processing. In other words, the main BB process waits
for the KS to finish before focussing on any other activity. We call
these KSARs atomic. In RTBB, atomic KSARs were used for most of
the KSs. One advantage of an atomic KSAR is that it allows the KS to
wrest control from the main BB process and implicitly freeze the
context. In other words, because the information on the BB cannot
alter during execution of the KS, you do not have to worry about the
inapplicability of what might be returned by the KS. Clearly, if the
information on the BB was allowed to change during execution of the
KS, it is entirely possible that what is returned by the KS may not be
relevant to the new state of the BB.

One major disadvantage of an atomic KSAR is that it does not
permit exploitation of parallelism usually associated with BB problem
solving. As mentioned in Section 1, one main attraction of using the
BB paradigm is that the KSs, if representing independent modules of
domain knowledge, should lend themselves to parallel invocation.
Although parallel executions of KSs are highly desirable from the
standpoint of enhancing performance, you should beware. Parallel
execution also demands that attention be paid to the elimination of
interference between the KSs, because one KS should not destroy the

44

NWC TP 7004

conditions that must exist on the BB for the results returned by
another KS to be relevant. Researchers have proposed methods to
deal with these difficulties; the methods consist of either locking
regions of the BB database or tagging different nodes with the
identities of the KSs that need them [Reference 25]). Another opinion
is that you should not bother with the overhead associated with
region locking or data tagging, and should simply let the BB resolve
any inconsistencies that might arise because of interference between
the KSs [Reference 25].

In addition to atomic KSARs in RTBB, we have another type of
KSAR that permits parallel invocation of two of the KSs; the latter
type are called distributed KSARs. KSs that can be invoked via
distributed KSARs are GET-BEAM and GETASSIGNMENT. An instance
of a distributed KSAR is made from the same flavor used for an
atomic KSAR. A most important characteristic of a distributed KSAR
is that the BB interaction with the KS is allowed to take place on a
polling basis.

The KS corresponding to a distributed KSAR is executed in
three stages. The first stage sends a command to the KS with all the
information needed to execute the KS. The format is just a list that
represents a function call with all the information as arguments. The
KS then just 'eval’'s the list. The second stage occurs when the system
does a non-blocking read of the KS port to see if the KS is finished. A
non-blocking read checks the port to see if data are available before
actually reading the data. If we had used a regular read, for example
via read or tyipeek functions, and no data were available at the port,
the used function would wait indefinitely for the data to appear or
do something unpredictable; but that is not what we wanted. We
wanted to be able to poll the KS every few clock cycles, check
whether or not the KS had returned the results, then read the results,
if available. In the absence of results, we wanted the system to
move on to other tasks, and return to the KS at a later time. Hence,
the reason for non-blocking read. The non-blocking read function
stores the KS results in the KSAR. The third stage occurs when the
BB modifies the answer returned from the KS accordingly. Between
stages, the BB actively works on other parts of the problem. The
result is a speedup because of the parallel processing carried out by
the system.

45

NWC TP 7004

An example of a distributed KSAR that seeks to invoke the
GETASSIGNMENT KS follows.

<ksar 1074284> is an instance of flavor ksar with instance variables:

priority: 1

ksar-id: segment

ks: hit

cycle: 40

trigger: change

context: ((time nil) (number <bbevent 1075036>) &)
preconditions: empty

boot: (post-assign-hits)

nodeptr: <bbevent 1075036>

stage: 1

messenger: <messenger 1072204>

command: getassignment

arglyst: ('((8 93.54559999999999 6.019744 0.0)

(8 5.52 93.54559999999999 0.0)
(8 93.54559999999999 5.52 0.0))
'((9 92.67895 6.1425 0.0)

(9 6.1425 92.67895 0.0)

(9 92.67895 6.642136 0.0)))

anslyst: nil
preboot: (pre-assign-hits)
prelyst: ((<snode 1073184> <snode 1073144>

<snode 1072948>) & & & 9)

This KSAR is created by making an instance of the KSAR flavor
shown earlier. The flavor ks-protocol, which is a part of the KSAR
flavor definition, is presented below.

...

P ENIISE NI IIIIIIIIINNITIIINIIIINNIIIIRIIEIDNIIINIIIIIIIIIINIIIIIINIIIY
.e
(1]

;» This is a mixing flavor called ks-protocol

...

PN PN IINIII NI IPIDIIIINNINIIIINIIININIININILNIIIINNIIIINNIIIIIYY

(defflavor ks-protocol

(

command ; the input function

arglyst ; the argument list

anslyst ; answer list

prehoot ; command to start up function after read
prelyst ; argument list for reboot after read

)

:gettablc-instance-variables
:settable-instance-variables
:inittable-instance-variables

)

46

NWC TP 7004

As will be evident from the following definitions of the variables, the
mixin flavor is only useful for a distributed KSAR. Because all KSAR
instances use the mixin, you might wonder why you should use the
mixing ks-protocol at all; after all, the variables in the mixin could
have been incorporated in the definition of the KSAR flavor. Note
that even when a mixin is always used for defining objects, the
mixin's separate definition allows the definitions of objects to be
expanded incrementally as the software develops. Also, take
advantage of the fact that mixin associated methods will be invoked
in a certain order, depending on the order of appearance of mixins,
etc.

The nature of the variables from priority through nodeptr in
connection with atomic KSARs has already been explained. We will
now define the other variables. The variable stage is instantiated to
either 2, 1, -1, or 0. When the instantiation is 1, the KSAR is in the
first stage, meaning that the KSAR is ready to send a command to the
KS that would initiate execution of the KS. The command is taken off
the variable command and the arguments from arglyst. After the
command is transmitted to the KS, the instantiation of stage is set to
-1, which is a signal to the BB process to start polling the KS port for
new results using non-blocking read. The results are read off the KS
port, deposited in the KSAR at anslyst, and the instantiation of srage
is changed to 0. The instantiation of O for stage causes the function
at boot, in this case post-assign-hits, to take the results out of the
KSAR and deposit them at the appropriate place in the BB database,
at which time the KSAR ceases to exist.* Obviously, stage is used to
sequence initiation, execution, and results-reporting phases of KS
operation in the correct order. In this KSAR example, the variable
arglyst already has an instantiation, so KSAR processing can begin in
stage 1. In some cases arglyst instantiation can be generated easily
at the time the KSAR is formed by the planner—when a KSAR is
formed to invoke GETBEAM because the arglyst here is nil. In other
cases, some computational effort may have to be expended to
construct the arguments. In the latter cases, arglyst is synthesized
by adding yet another stage to the three stages already mentioned.

* The use of boot in a distributed KSAR is different from that in an
atomic KSAR. In the latter, boot holds the function name to invoke the KS, a
job now carried out by the instantiation of command. This inconsistency in
the use of boot and some other variables is due to the manner in which RTBB
has evolved.

47

NWC TP 7004

This additional stage is specified by instantiating stage to 2. When
the scheduler sees this instantiation, a function call is put out that
constructs the arguments; the function call is held in the variable
preboot. In the above example, the arglyst instantiation was
generated by a call to the function (preassign-hits) when stage was
set to 2. The preboot function, in this case pre-assign-hits,
synthesizes arguments for the function call to the KS, and also puts
together, for diagnostic purposes, a list of all the BB database items
used for the arguments. The database items used are stored in the
variable prelyst.

A note of explanation is in order for the exact nature of
arguments under arglyst in the above example. The function pre-
assign-hits examines all the snodes in the BB database and lists the
most recent hit from each snode. This list of hits is the first of two
arguments under the variable arglyst; the time stamp that
corresponds to this argument is 8. The second argument under
arglyst, which corresponds to time stamp 9, is the list of hit nodes
that must be assigned to the segments or allowed to form new
segments. The GETASSIGNMENT KS then tries to assign each new hit
to a segment, which is based on the spatial and temporal closeness of
the hit to the most recent entry.

The actual activation of a KS, for both the atomic and
distributed KSARs, is carried out by sending a write command to a
flavor that acts as an I/O handler for the BB. The write command is
synthesized by the following method, which is defined for the KS-
protocol flavor.*

5, This method writes to the input port of the KS, which is the
;v same as one of the output ports of the BB process.

(defmethod (ks-protocol :write-ks) ()
(format t "COMMAND scnt to ks ~a~%" (cons command arglyst))

(format (send ; get output port name from messenger flavor
(send seif :messenger) ; get messenger name from variable
:write-port) "~a~%"

(cons command arglyst)) ; form function call
(send self :set-stage -1) ; change state of ksar to read

)

* Note that this method is neither an after-method nor a before-method.
The method shown here is a primary method that is invoked by sending the
":write-ks' message to the ks-protocol flavor.

48

NWC TP 7004

Essentially, a complex format statement that finds the correct input
port to the KS (which is the same as an output port of the BB
process), constructs the command sequence from the variables
command and arglyst in the KSAR, and sends the command to the
port. Before exiting, the method also changes the state of the KSAR
stage to reflect that the command was sent to start KS execution, and
that the KSAR is now ready for non-blocking read.

We have not yet explained the purpose of the variable
messenger shown above. To understand the function of the
messenger variable in the distributed KSAR example, associate an
I/O handler with each KS. The handler should contain information
such as the identity of the input and output ports associated with the
KS. I/O handlers are created by making instances of the messenger
flavor shown below.

;» This is the flavor messenger

(defflavor messenger ;; these should be named after ks's
(
write-port the output port to the process
write-fd H the output port file descriptor
read-port ; the input port to the process
read-fd : the input port file descriptor
pid ; the process identity
)

O
:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables

)

The variables write-port and read-port are instantiated to
internally-generated symbolic names that designate the two ports;
the symbolic names are returned by a "*process’ call like

(*process 'path t t)
This call will return

(#<port from-process> #<port to-process> 13067)
where the symbolic name #<port from-process> is the output port of

the unix process whose processor id is 13067, the unix process in this
case being 'path’. Similarly, #<port to-process> is the symbolic name

49

NWC TP 7004

of the input port of the process that calls up the UNIX process
representing the KS. For the benefit of readers not familiar with the
LISP-UNIX interface, a call like (*process 'path) would actually run
the UNIX process 'path’. The variables write-fd and read-fd are
instantiated to the file descriptors for the two ports; these file
variables were convenient for diagnostics but are not used for
anything at this time. The variable pid is instantiated to the process
id; this variable also is not used at this time. The variable messenger
in the distributed KSAR is instantiated to the identity of that instance
of the messenger flavor associated with the KS that the KSAR seeks
to invoke.

A discussion of how the KSARs are queued in the current
implementation of RTBB follows. As previously mentioned, to
maximize the potential for parallel implementations of the KSs, the
system should construct separate KSAR queues for each KS.
However, the current implementation has separate queues only for
the GETBEAM and GETASSIGNMENT KSs, called beam-queue and
assign-queue, respectively; all other KSARs are queued into the
atomic-queue (Figure 4b). Each KSAR queue is an instance of the
following event flavor:

(defflavor event (
number
(mask '(1 1))
(atomic-queue '())
(beam-queue '())
(assign-queue '())
)

)
:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

Note that the mask represents the status of the KSARs currently at
the head of the queues. The mask instantiation list has a status
value for each of the distributed-KSAR queues, and the
interpretation given to each value in the list is the same as for
instantiations of the variable stage in a distributed KSAR. In the
defflavor, the initial mask values have been set to 1 for head KSAR in
both the beam-queue and the assign-queue, meaning any KSARs
found at the head of the respective queues are in stage 1. Stage
value of 1 corresponds to write stage in which commands are written
to the KSs.

50

NWC TP 7004

A single instance of this flavor is made, and the resulting object
is called ksarq. The variable atomic-queue of this object, initially a
null list, is instantiated to the list of all the atomic KSARs; the
variable beam-queue is instantiated to the list of all the distributed
KSARs that seek to invoke the GETBEAM KS; and, finally, the variable
assign-queue 1is instantiated to the list of all the distributed KSARs
that seek to invoke the GETASSIGNMENT KS.

The RTBB scheduler cycles through the three queues, looks at
the head KSAR in each queue, and services the KSAR in a manner
that depends on whether the KSAR is in atomic-queue or one of the
other queues. For the atomic-queue the KS is threaded into the BB
process before visiting the other queues. For the beam-queue and
assign-queue, the KS activation is executed in stages described
earlier so that the BB does not wait for the KS to finish executing.

The following is an example of ksarq during execution.

<event 1071376> is an instance of flavor event with instance variables:

number: 3

mask: (1 nil 2)

atomic-queue: (<ksar 1074140> <ksar 1074212>)
beam-queue: nil

assign-queue: (<ksar 1074284>)

The mask represents the status of the atomic-queue as 1, which
means nothing for this queue; nil for the beam-queue, which is
empty; and 2 for the assign-queue, which means the KSAR is ready
for the preboot function to be run. The variable number is
instantiated to the total number of KSARs held in the queueing
system and updated at every change by a defmethod.

The clock is used in the system in the following way. Each
cycle of the scheduler goes through all three queues. Each cycle of
the scheduler is followed by an invocation of the planner, which
maps all the previously unattended goals into KSARs or subgoals.
One cycle of the scheduler followed by one invocation of the planner
constitutes one control cycle, and one control cycle constitutes one
clock unit. When the BB process is first started, the main control loop
deposits a goal at the hit level; this goal, which generates new hits, is
placed at the hit level every fourth clock unit. The scheduler now
looks at all the queues, first examining the atomic-queue, which is

51

NWC TP 7004

empty. The scheduler then examines the beam-queue, where a KSAR
generated by the planner from the hit-level goal is found. The
scheduler services this KSAR according to the stage status value
stored in the mask variable of ksarq. Finally, the scheduler looks at
the assign-queue, which is also empty. The process then repeats, as
depicted in Figure 4b.

The main control loop, which alternately runs the planner and
the scheduler, is shown below.

...

3999999539999 999999999999999399959999999999%993999999999993393999599999
..
”»”

;3 this is the main loop for driving the BB

..

PPP999999999999559999599995999592959997959599999933999995359999999))

(defun cloop ()
(do O ;put into infinite loop
()
(go-for-it) ; allows you to choose the number of control cycles
(clock-update) ; updates the clock variable and place a goal at the
; hit level every fourth clock unit. It also places
; a purge-segments goal at the hit level every fourth

; cycle.
(plan-goals) ; maps the goals into ksars, it calls the rule-based
; planner
(scheduler) ; runs the scheduler which cycles through the three

; KSAR queues in ksarq.
))

The comments explain the nature of each function in the main
control loop.

8
CONCLUSIONS

The purpose of this report is to convey a sense of how LISP
object-oriented programming can be used to construct a BB. In
practically all the literature we went through, details on how to
program a BB were sorely missing. We hope this report rectifies that
deficiency, at least to some extent.

Obviously, our BB was meant as a learning and training
exercise. Therefore, our efforts should not be judged on whether we

52

NWC TP 7004

succeeded in designing a usuable system for controlling a radar
system. Our efforts should instead be judged on whether we
succeeded in reducing the problem to manageable proportions, and
in explaining the important details of our implementation.

Although the RTBB system currently works, many aspects of
the system could be refined. For example, one of our future goals is
to implement a separate queue for ‘each KS, thus making it possible
to use the RTBB in a parallel or multiprocessor mode. Another goal is
to have all the KSARs be the distributed type, which would make it
necessary to somehow split those KSs currently processed via atomic
KSARs into pre, write, read, and post phases. The RTBB rule-based
planner is rudimentary at this point. A more knowledgeable planner
could be created to better focus the control.

As mentioned in the previous section, a clock unit in RTBB
consists of the scheduler taking one pass through all the queues and
one invocation of the planner. This definition of a clock unit makes
the programming easy, although somewhat artificial. If the BB was
run by a real clock, we would have to design functions to buffer the
radar returns; the BB would then take the hits out of the buffer when
able to address that task. Real-time implementation of RTBB is a
future goal.

53

NWC TP 7004

GOAL PANEL

DATA PANEL

/
TRACKS
e

7’
‘/ < &__<~___
PLANNER SEGMENTS "/A
AND [€---
SCHEDULER
J‘ SO HITS o —>—
DISTRIBUTED
MONITOR
Y
KS1
Q
[=]
Y 5 3 KSARQUEUEING SYSTEM |———p °
KS N-1
KS N
KNOWLEDGE SOURCES

FIGURE 1. Radar Tracking Blackboard (BB).

54

NWC TP 7004

GOAL PANEL DATA PANEL
=
=
o —e-
Goal Nodes Data Nodes

O. Hits—flavors of type bbevent
that express the desire to
generate a data hit node.

CJ . Segments—flavors of type
bbevent that express the desire

to match the hit data to
segments.
J Tracks—flavors of type

bbevent that express the desire
to establish the segment node as
part of a track.

®. Hits—flavors of type bnode
that contain the returns
information.

M. Segments—flavors of type
snode that contain the linear fits.

B Tracks—flavors of type
tnode that contain the groups of
close segments.

(a) Blackboard goal and data node descriptions.

FIGURE 2. Blackboard Nodes and Knowledge Sources.

55

NWC TP 7004

TRACKS

SEGMENTS

HITS

HIT GENERATION - simulates aircraft trajectories.
ASSIGNMENT - associates radar returns to best segments.

TRACK FORMATION - associates individual segments with
tracks.

SPLINE - checks if segments are associated with the
proper tracks.

(b) General description of knowledge sources.

FIGURE 2. (Contd.)

56

NWC TP 7004

e

(a) Actuai tracks (b) Possible associations.

DATA SEGMENTS

(c) Actual associations.

FIGURE 3. The Assignment Problem and Its Graphical Interpretation.

57

NWC TP 7004

KSl1

KS2

KS3

Q

(a) Ideal KSAR queueing system.

FIGURE 4. KSAR Queueing System. The server is the BB process.
The queueing discipline is cyclic, with at most one task or
subtask executed per server visit.

58

NWC TP 7004

ASSIGN - QUEUE

(b) Actual KSAR queueing system.

FIGURE 4 (Contd.)

59

10.

NWC TP 70u4

REFERENCES

Yaakov Bar-Shalom and Thomas E. Fortmann. Tracking and
Data Association. New York, Academic Press, 1987. Pp. 1-353.

V. Lesser and D. Corkill. "Funtionally Accurate, Cooperative,
Distributed Systems," IEEE Transactions on Systems, Man, &
Cybernetics, Vol. SMC-11, No. 1. (January 1981), pp. 81-96.

H. Penny Nii. "Blackboard Systems: The Blackboard Model of
Problem Solving and the Evolution of Blackboard
Architectures,” The Al Magazine, Summer 1986, pp. 38-53.

H. Penny Nii. "Blackboard Systems Blackboard Application
Systems, Blackboard Systems from a Knowledge Engineering
Perspective," The Al Magazine, August 1986, pp. 82-106.

Blackboard Systems, ed. by Robert Englemore and Tony
Morgen. New York, Addison-Wesley, 1988. Pp. 1-602.

H. Penny Nii and others. "Signal-to-Symbol Transformation:
HASP/SIAP Case Study,” The Al Magazine, Spring 1982, pp. 23-
35.

K. M. Andress and A. C. Kak. Al Magazine, Summer 1988, pp.
75-94.

K. Andress and A. C. Kak. "The PSEIKI Report - Version 2" in
Technical Report TR-EE 88-9, Purdue University, W. Lafayette,
Ind., 1988.

Daniel D. Corkill. A Framework for Organizational Self-Design in
Distributed Problem Solving Networks. Ph.D. Thesis, U of Mass,
February 1983, pp. 1-372.

Barbara Hayes-Roth. "A Blackboard Architecture for Control,"
Artificial Intelligence, Vol 26, (1985), pp. 251-321.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

NWC TP 7004

Victor Lesser and Edmund Durfee. "Incremental Planning in a
Blackboard-Based Problem Solver,” in proceedings of the
National Conference on -Artificial Intelligence, AAAI Conference,
Philadelphia, Pa., August 1986. Pp. 58-64.

"Visions: a Computer System for Interpreting Science,” in
Computer Vision Systems, ed. by A. R. Hanson and E. M.
Riseman. New York, Academic Press, 1978. Pp. 303-33.

M. A. Williams. "Distributed, Cooperating Expert Systems for
Signal Understanding,” in proceedings of Seminar on Al
Applications to Battlefield, 1985. Sections 3.4-1 to 3.4-6.

R. Worden. "Blackboard Systems,” in Computer Assisted
Decision Making, ed. by G. Mitra. New York, North Holland,
1986. Pp. 95-106.

Naval Weapons Center. Distributed Inference Structures Bids
and Proposals Report, by P. R. Kersten and J. L. Hodge. China
Lake, Calif.,, NWC, September 1986. 16 pp. (NWC TM 5857,
publication UNCLASSIFIED.)

Daniel D. Corkill and others. GBB: A Generic Blackboard
Development Systems, in proceedings of the Fifth National
Conference on Artificial Intelligence, AAAI Conference, 1986,
Philadelphia, Pa., 1986. Pp. 1008-14.

I. D. Craig. "The Ariadne-1 Blackboard System,” The Computer
Journal, Vol. 29, No. 3 (1986), pp. 235-40.

Franz LISP Reference Manual, ECN No. 750. Purdue University,
W. Lafayette, Ind., March 1987.

P. H. Winston and B. K. P. Horn. LISP, 2nd ed. New York,
Addison-Wesley, 1984. Pp. 1-434.

Robert B. Cooper. Introduction to Queueing Theory. 2nd ed.,
New York, North Holland, 1981. Pp. 1-347.

I. Faux and M. Pratt. Computational Geometry for Design and
Manufacture. Ellis Horwood Limited, 1979.

62

22.

23.

24.

25.

NWC TP 7004

Frederick S. Hillier and Gerald J. Lieberman, "Integer
Programming,"” in [Introduction to Operations Research.
Oakland, Calif., Holden-Day, 1980.

Nils J. Nilsson. Principles of Artificial Intelligence. Palo Alto,
Calif., Tioga Publishing Co., 1980. Pp. 1-476.

G. Forsythe, M. Malcolm, and C. Moler. Computer Methods for
Mathematical Computations.. New York, Prentice-Hall, Inc.,
1977. Pp. 1-229.

V. Lesser and R. Fennell. "Parallelism in Aritificial Intelligence

Problem Solving: A Case Study of Hearsay II," IEEE Transactions
on Computers, Vol. C-26, No. 2, (February 77), pp. 98-143.

63

NWC TP 7004

Appendix
EXAMPLES OF BLACKBOARD TRACKING

65

NWC TP 7004

EXAMPLE 1

In this example, most of the flavors are expanded to illustrate
the detail of each step. This expansion will be done only in this
example.

This example illustrates the BB solution formation for a single
trajectory. The data that drive the trajectory are based on Bezier's
curve. The trapezoid that defines the trajectory is given by the four
points indicated in Figure A-1. Note that the origin is one of the
points, so the trajectory will go through the origin. The origin in
these examples is a special point and represents not only the origin
of the coordinate system, but the center of the air space around a
hypothetical airport. The starting point of the single trajectory is
(100,0,0).

The data bnode flavor for the initial and all other points is
initiated periodically by placing a goal node on the hit level of the
goal panel. The goal node generates a KSAR that fires the hit
generation KS GETBEAM. As mentioned in Section 7 of this report,
this KSAR is distributed, although no preboot function is necessary
becuase the function call is so simple. The preboot may be
considered a precondition type of function that freezes the context
and extracts the variables needed by the KS. The preconditions
variable is never used, a misnomer arising out of the development
process. The KSAR looks as follows:

66

NWC TP 7004

<ksar 1072368> is an instance of flavor ksar with instance variables:

priority 2

ksar-id: newhit
ks: add

cycle: 1

trigger: clock
context: none
preconditions: empty
boot: (getbeam)
nodeptr: nil
channel: 1
messenger: <messenger 1072044>
command: fire
arglyst: nil
anslyst: nil
preboot: nil
prelyst: nil

The boot is the C-coded KS called GETBEAM and creates the command
to fire the KS. The KSAR causes the formation of a data node to be
placed on the hit level of the data panel. The data node looks as
follows:

<bnode 1072668> is an instance of flavor bnode with instance variables:

type: hit

time: 0

coord: ((100.0 0.0 0.0))
number: 1

Note that the return count is given by number and occurs at time 0
at the coordinates coord. The node type is specified by type.

The placement of this hit node on the data panei causes

placement of a goal node on the segment level of the goal panel. This
goal node looks as follows:

67

NWC TP 7004

<bbevent 1072808> is an instance of flavor bbevent with instance

variables:
source: <bnode 1072668>
action: change
ltype: hit
variable: coord
time: 0
coord: ((100.0 0.0 0.0)»
number: 1
threat: nil
snode: nil
pattern: nil
duration: one-shot
position: nil
goalptr: nil
conditions: nil
ksarptr: nil

This goal represents the desire to match this data to the nearest
segments. The duration of the goal node is one-shot, which means
the rule base gets only one pass to satisfy itself; otherwise the goal
node is removed from the goal panel. The source is a pointer to the
data node responsible for the creation of the goal node by the
distributed monitor.

The rule base causes the segment goal node to generate a KSAR
to match the hit data to the nearest segment, if there is one.
Otherwise, KS creates a new segment. Again, the ksar-id generally
describes the driving activity, i.e., segment formation. The KSAR for
this KS is distributed with a separate preboot function that forms the
arguments for the BB f{ormation. The boot function is really the
postboot function; use of the function changed while the BB system
evolved, and the term boot became too embedded to easily change.
The command variable carries the main KS call function and looks as
follows:

68

<ksar 1072876> is

NWC TP 7004

an instance of flavor ksar with instance variables:

priority: 1

ksar-id: segment

ks: hit

cycle: 4

trigger: change

context: ((time nil)(number <bbevent 1072808>) &)
preconditions: empty

boot: (post-assign-hits)
nodeptr: <bbevent 1072808>
channel: 2

messenger: <messenger 1072204>
command: getassignment
arglyst: nil

anslyst: nil

preboot: (pre-assign-hits)
prelyst: nil

The GETASSIGNMENT KS, which is fired by this KSAR, matches the
segments to the data, and the post-assign-hits furction places the
nodes on the data panel at the segments level. This segment node
looks as follows:

<snode 1072948> is an instance of flavor snode with instance variables:

type: segment

time: 0)

coord: ((100.0 0.0 0.0))
number: nil

cpa: nil

linear: nil

tnode: nil

threat: nil

Most of the variables are initially nil because the segment is not long

enough. However, these variables will fill in later when the segment
becomes part of a track. In fact, two time units later the snode looks
as follows:

69

NWC TP 7004

<snode 1072948> is an instance of flavor snode with instance variables;

type: segment

time: (1,0)

coord: ((99.24254999999999 (0.7425 0.0) (100.0 0.0 0.0))

number: 2

cpa: (49.00339911339883 49.99006688005953 0.0)

linear: ((99.24254999999999 0.7425 0.0)
(-0.7574500000000057 0.7425 0.0)

trode: nil

threat: nil

At the formation of a data-segment node, a demon from the
distributed monitor creates a track goal node that represents the
desire to form a track from the segments. The goal node looks as
follows:

<bbevent 1073816> 1is an instance of flavor bbevent with instance

variables:

source: <snode 1072948>

action: change

type: segment

variable: number

time: (1 0)

coord: ((99.24254999999999 (.7425 0.0)
(100.0 0.0 0.0)

number: 2

threat: nil

snode: nil

pattern: nil

duration: one-shot

position: nil

goalptr: nil

conditions: nil

ksarptr: nil

Note that a data-segment node is the source of this node, and the
coord is the two consecutive coordinates used to form the segment
and the track. The time variable is the sequence of times that
support formation of the track.

Again, the rule base creates the following KSAR from this track

goal node. The purpose of the KSAR is to form tracks from the
segments.

70

NWC TP 7004

<ksar 1074640> is an instance of flavor ksar with instance variables:

priority: 0

ksar-id: track

ks: segment
cycle: 16

trigger: change
context: ((time nil)(number <snode 1072948>) &)
preconditions: empty

boot: (assign-tracks)
nodeptr: <snode 1072948>
channel: 1

messenger: nil

command: nil

arglyst: nil

analyst: nil

preboot: ril

prelyst: nil

Unlike the previous KSAR on the assignment of hits, this KSAR is an
atomic KSAR. The KS places a track node on the data panel at the
track level. This node looks as follows:

<tnode 1074228> is an instance of flavor tnode with instance variables:

type: track

time: (1)

last-coord: (99.24254999999999 0.7425 0.0)
last-velocity: (-0.574500000000057 0.7425 0.0)
threat: nil

snode: (<snode 1072948>)

cpa-bracket: ((43.97948402473871 54.02731429295895)
(45.063561019205357 54.91482356806549))

check: nil

checklyst: nil

This data node time variable contains only the current time. The
last-coord and last-velocity are the corresponding position and
velocity. The variable snode contains a list of pointers to the
segments that form the support for the tracks. The confidence
region, which is called cpa-bracket, causes the threat variable to be
marked if it includes the origin. For the node above, the track does
not yet appear as a threat.

The above nodes are the initial formation of the solution track.
The solution track structure is a tree; the base of the tree is the track
node, and the branches are the segment nodes. This example has
only one branch, so the solution tree is very simple. The track
coordinate history contained in the tree expands as the track grows
in length. As an example, consider a segment node at a later time:

71

NWC TP 7004

<snode 1072984> is an instance of flavor snode with instance variables:

type: segment
time: 43210
coord: ((96.8832 2.88 0.0)

(97.68385000000001 2.1825 0.0)
(98.4704 1.47 0.0)
(99.24254999999999 0.7425 0.0)
(100.0 0.0 0.0))

number: 5
cpa: (43.2289227832382 49.621934519913962 0.0)
linear: ((96.88322.88 0.0)

(-0.8006500000000045 0.6974999999999998 0.0))
tnode: <tnode 1074228>
threat: nil

Note that the cpa and the linear model that the segment included
were calculated. The threat was evaluated and the track node, which
this segment node supports, is contained in tnode. Information was
sent to this node by demons associated with these nodes or by the
KSs themselves.

After the segment information is extended to more than 13
points, the list is truncated with after-method. After about 20 time
units, the snode looks as follows:

<snode 1072948> is an instance of flavor snode with instance variables:

type: segment
time: (2019181716 1514131211109 8)
coord: ((82.40000000000001 12.0 0.0)

(83.38545000000001 11.5425 0.0) (84.3616 11.07 0.0)
(85.32814999999999 10.5825 0.0) (86.2848 10.08 0.0)
(87.23125 9.5625 0.0)

(88.16719999999999 9.029999999999999 0.0)
(89.09235 8.4825 0.0) (90.0064 7.92 0.0)
(90.90904999999999 7.3425 0.0) (91.8 6.75 0.0)
(92.67895 6.1425 0.0) (93.54559999999999 5.52 0.0))

number: 13

cpa: (19.19401128389733 41.34369053489974 0.0)

linear: ((82.40000000000001 12.0 0.0)
(-0.9854500000000002 0.4574999999999996 0.0))

tnode: <tnode 1074228>

threat: nil

In the above snode, the maximum length of the coord and time
variables is now only of length 13, as fixed by a global variable. The
truncation length may be set to any fixed value, but this variable is
not totally independent of the other parameters. For example, a

72

NWC TP 7004

track may only be generated when the segment length exceeds
another fixed parameter. Certainly, the truncation length must
exceed this minimum length needed to initiate a track. Therefore,
the truncation length must be chosen carefully, otherwise, the entire
program could be comfounded.

The general sequence of KS calls is outlined in Figure A-2. The
order of KS calls is numbered to push data nodes to higher levels of
abstraction. The order is not exact because several data nodes must
be advanced to form a track, but the general order required to push
data through to support a track solution is outlined. The first KS is
the hit generation KS (GETBEAM), the second KS is the
GETASSIGMENT KS, and the third KS is the track formation KS
(GETTRACK). Demons from the distributed monitor generate the goal
nodes from the data nodes. The simple construction illustrated is
essentially data driven with goal nodes isomorphically mapped to KS.
This example illustrates the operation of a goal-driven BB emulating
a data-driven BB.

73

NWC TP 7004

EXAMPLE 2

In this example three separate craft are being observed. Three
craft generate returns but only two track solutions are formed. This
-example illustrates the track-formation process and especially the
grouping of segments into tracks.

Figure A-3 shows a plot of three trajectories. Two of these
trajectories are very close and logically form a track. The other
trajectory forms a separate track. The plots of Figure A-3 are
mirrored in the data structures on the BB panels. Because a tree
represents a track, one tree represents the two close trajectories, and
the other tree represents the single trajectory. Each tree groups the
time sequences to form a track, and the set of all tracks formed from
the data is a forest.

Figure A-4 traces the formation of the solution trees on the BB.
This formation is similar to that of a single track. The overall
crisscrossing of the solution path on the BB panels from lower levels
to higher levels of abstraction is because of the data-driven nature of
the problem. The presence of three distinct trajectories in the data
causes formation of three distinct nodes on the goal panel. Each goal
represents the desire to use the data-segment node as support for a
track node. Support means the segment node supports the
hypnthesis that the track node should contain that segment as part of
the group that makes up the track.

The following two tracks show some of the data nodes on the
BB after the tracks have been established:

75

NWC TP 7004

<tnode 1074720> is an instance of flavor tnode with instance variables:

type: track

time: (5)

last-coord: (96.07797734375001 3.905422931640625 0.0)
last-velocity: (-0.8144500000000079 0.6824700000000004 0.0)
threat: nil

snode: (<snode 1072948> <snode 1073184>)

cpa-bracket: ((36.18550040607643 54.2522089149583)
(44.94766067922566 55.14530386696201))

check: nil

checklyst: nil

<tnode 1074676> is an instance of flavor tnode with instance variables:

type: track

time: (5)

last-coord: (3.6225 96.12575 0.0)

last-velocity: (0.6825000000000001 -0.8144500000000079 0.0)
threat: nil

snode: (<snode 1073144>)

cpa-bracket: ((44.80414791166273 54.91482356806549)
(35.91704278661875 54.02731420205895))

check: nil

checklyst: nil

Note that <tnode 1074720> is the second track in Figures A-3
and A-4 with two supporting segment nodes. Snode is the list of
pointers to segment nodes. The pointers contained in snode are
branches of the solution tree and the supports for the track
hypothesis. The other track node <tnode 1074676> has only one
pointer, which means it has only one branch and one supporting
segment node. Neither track is presently a threat to the origin,
although the track's plot indicates that this will not be true in the
future.

In this case the snodes also contain parent pointers that
establish which track they support. These nodes look as follows:

76

NWC TP 7004

<snode 1073184> is an instance of flavor snode with instance variables:

type: segment
time: (543210
coord: ((96.06874999999999 4.062438 0.0)

(96.8832 3.379968 0.0)
(97.68385000000001 2.682486 O.

number: 6

cpa: (41.62943218734221 49.67997281196416 0.0)

linear: ((96.06874999999999 4.062438 0.0)
(-0.8144500000000079 0.6824700000000004 0.0))

tnode: <tnode 1074720>

threat: nil

<snode 1073144> is an instance of flavor snode with instance variables:

type: segment
time: 543210
coord: ((3.5625 96.06874999999999 0.0) (2.88 96.8832 0.0)

(2.1825 97.68385000000001 0.0) (1.47 98.4704 0.0)
(0.7425 99.24254999999¢99 0.0) (0.0 100.0 0.0))

number: 6

cpa: (49.38655323518081 41.38537980601705 0.0)

linear: ((3.5625 96.06874999999999 0.0)
(0.6825000000000001 -0.8144500000000079 0.0))

tnode: <tnode 1074676>

threat: nil

<snode 1072948> is an instance of flavor snode with instance variables:

type: segment
time: (543210
coord: ((96.06874999999999 3.5625 0.0)

(96.8832 2.88 0.0)(97.68385000000001 2.1825 0.0)
(98.4704 1.47 0.0) (99.24254999999999 0.7425 0.0)
(100.0 0.0 0.0))

number: 6

cpa: (41.38537980601705 49.38655323518081 0.0)

linear: ((96.06874999999999 3.5625 0.0)
(-0.8144500000000079 0.6825000000000001 0.0))

tnode: <tnode 1074720>

threat: nil

At a much later time both tracks are classified as threats; at the
time stamp of 41 the track nodes look as follows:

77

NWC TP 7004

<tnode 1074720> is an instance of flavor tnode with instance variables:

type: track

time: (41)

last-coord: (60.0895833333333418.3031817537037 0.0)
last-velocity: (-1.111450000000005 0.1400399999999991 0.0)
threat: t

snode: (<snode 1072948> <snode 1073184>)

cpa-bracket: ((-2.437209695431297 54.2522089149583)
(24.69991086768157 55.14530386696201))

check: t

checklyst: nil

<tnode 1074676> is an instance of flavor tnode with instance variables:

type: track

time: (41)

last-coord: (18.7425 60.44255 0.0)

last-velocity: (0.1424999999999983 -1.111450000000005 0.0)
threat: t

snode: (<snode 1073144>)

cpa-bracket: ((24.69991086768157 54.91482356806549)
(-2.422621460220589 54.02731420205895))

check: nil

checklyst: nil

At the time stamp of 41, both tracks represent threats to the
origin, and the threat variable is instantiated as true. The confidence
region represented by the cpa-bracket has one coordinate that
straddles the origin. This condition, although an arbitrary and
probably not a sharp criterion, illustrates the detection via the rule-
based system.

78

NWC TP 7004

EXAMPLE 3

In this example, three separate craft are being observed.
Initially, these three craft form one track. Subsequently, one craft
breaks away from the established track. This example illustrates the
detection of the breakaway and the subgoaling needed to establish
two tracks.

Figure A-5 shows a plot of three trajectories. Initially, all these
trajectories are very close and logically form a track. However, as
the track evolves in time, one of the segments supporting the track
formation departs from the track itself, meaning that if the track
grouping were reformed, two tracks instead of one would be formed.
The spline test is a back-chaining algorithm designed to detect
whether the grouping of segments into a track is still logically valid.

One way to solve the problem of regrouping the tracks is to
dissolve the track node, and keep the segment nodes on the data
level after removing their parent pointers to a track. The track-
formation algorithm would then pick up these uncommitted
segments and regroup them into tracks. This solution is acceptable
but not as desirable as maintaining the track history and forming a
new track from a subset of the segments of the original track. This
formation is implemented by subgoaling—an important technique
that allows finer granularity in KSs and easier implementation of
more complex goal interrelationships.

The nodes or solution tree should reflect the history of the
trajectory. Indeed, Figure A-6 shows the parallel between the
physical trajectories and data structures that represent these
trajectories. First, a tree is formed on the BB that has only one root,
i.e., one trajectory with three branches representing the three
distinct craft. Once the track is established and determined to be a
threat, the track grouping is checked via the spline KS. When the
track grouping is not verified by the spline KS, subgoals for each

79

NWC TP 7004

segment are created and placed on the goal segment level. Each goal
represents the desire to determine if that segment is in the same
equivalence class as the average track that represents the root of the
track. If the segment does not satisfy the grouping criterion against
the track, the segment is spun off as a segment with no parent
pointers, which means the BB will establish this segment as a
separate track. The following paragraphs show the state of the nodes
in this sequence.

Initially, the track node formed from the three segments looks
as follows:

<tnode 1074676> is an instance of flavor tnode with instance variables:

type: track

time: (1

last-coord: (99.24254999999999 98.61066633333331 0.0)
last-velocity: (-0.7574500000000057 -1.722667000000001 0.0)
threat: nil

snode: (<snode 1072948> <snode 1073144)

<snode 1073184>)
cpa-bracket: ((32.08760233000798 62.90600256325121)
(-31.94628530341367 -7.667384301036718))
check: nil
checklyst: nil

Three snodes or branches support this track. The three segments
supporting the trajectory are given below. The track-node pointers
are really the parent pointers, or the edges of the graph, pointing to
the root of the tree that represents the track.

80

NWC TP 7004
<snode 1073184> is an instance of flavor snode w~ith instance variables:
type: segment
time: (10
coord: ((99.24254999999999 99.522324 0.0)
(100.0 101.0 0.0))
number: 2
cpa: (38.19259757273452 -19.5773518900408 0.0)
linear: ((99.24254999999999 99.522324 0.0)
(-0.7574500000000057 -1.477676000000002 0.0))
tnode: <tnode 1074676>
threat: nil

<snode 1073144> is an instance of flavor snode with instance variables:

type: segment
time: (10
coord: ((99.24254999999999 98.522325 0.0)
(100.0 100.0 0.0))
number: 2
cpa: (38.59849373098595 -19.78542580508939 0.0)
linear: ((99.24254999999999 98.522325 0.0)
(-0.7574500000000057 -1.477675000000005 0.0))
tnode: <tnode 1074676>
threat: nil

<snode 1072948> is an instance of flavor snode with instance variables:

type: segment
time: (1 0§
coord: ((99.24254999999999 97.78735 0.0)
(100.0 100.0 0.0))
number: 2
cpa: (58.86860840361245 -20.15231845764879 0.0)
linear: ((99.24254999999999 97.78735 0.0)
(-0.7574500000000057 -2.2126499999999%96 0.0))
tnode: <tnode 1074676>
threat: nil

This solution-tree structure is the initial state of the track before
discovery that the trajectory is a threat and before departure of one
of the craft from the formation.

81

NWC TP 7004

At the time stamp of 11, the track is determined to be a threat
to the origin, and the spline KS (GETSPLINE) now checks to see if
composition of the track still makes sense. The following track node
illustrates the track-node state just after threat determination.

<tnode 1074676> is an instance of flavor tnode with instance variables:

type: track

time: (11)

last-coord: (90.91376606802292 86.24495864263466 0.0)
last-velocity: (-0.8909500000000037 -1.085756000000003 0.0)
threat: t

snode: (<snode 1072948> <snode 1073144> <snode 1073184>)

cp.-bracket: ((3.746220505494785 62.90600256325121)
(-32.05750115050004 0.08018509395760631))

check: nil

checklyst: nil

The spline test detects the breakaway of a track, then marks the
track node check variable as failed. A failed spline test automatically
disables further spline tests for that track until a track-verification
KS can be run. The rule base will detect a failed track in the goal BB,
then generate a subgoal for each segment that supports the track.
Each goal expresses the desire to reevaluate the track-formation
grouping criterion of each segment against the averaged track. The
following are the subgoals generated by the rule base.

<bbevent 1074788> is an instance of flavor bbevent with instance

variables:
source: <tnode 1074676>
action: verify-track
type: track
variable: nil
time: (12)
coord: ((90.00946578449609 82.81725806347009 0.0)
(-0.9026499999999942 -1.052371999999991 0.0))
number: nil
threat: nil
snode: <snode 1073184>
pattern: nil
duration: one-shot
position: nil
goalptr: nil
conditions: nil
ksarptr: nil

82

NWC TP 7004

<bbevent 1074720> is an instance of flavor bbevent with instance
variables:

source: <tnode 1074676>

action: verify-track

type: track

variable: nil

time: (12)

coord: ((90.00946578449609 82.81725806347009 0.0)
(-0.9026499999999942 -1.052371999999991 0.0))

number: nil

threat: nil

snode: <snode 1073144>

pattern: nil

duration: one-shot

position: nil

goalptr: nil

conditions: nil

ksarptr: nil

<bbevent 1075076> is an instance of flavor bbevent with instance

variables:
source: <tnode 1074676>
action: verify-track
type: track
variable: nil
time: (12)
coord: ((90.00946578449609 82.81725806347009 0.0)
(-0.9026499999999942 -1.052371999999991 0.0))
number: nil
threat: nil
snode: <snode 1072948>
pattern: nil
duration: one-shot
position: nil
goalptr: nil
conditions: nil
ksarptr: nil

Each of these subgoals points to the parent track as the source,
and to the supporting segment node as the snode. The KSAR
generated from each of these subgoals will activate the VERIFY KS.
This KS is part of the BB process, i.e., not spun-off as a separate
process. If the segment is reverified to be in the same track
grouping, then nothing is done, except recording the verification
result by removing the node from the checklyst. If the segmeni is
not reverified, then the KS does three things. First, the KS removes
the segment pointers in the track node, i.e., the pointers to the
siblings or branches of the tree. Second, the KS removes the parent
pointer in the segment node or the pointer to the root of the tree

83

NWC TP 7004

representing the track. And third, the KS removes the pointer from
the checklyst of the track node.

The snode orphaned by the VERIFY KS is the following segment
node.

<snode 1073184> is an instance of flavor snode with instance variables:

type: segment
time: (131211109876543210)
coord: ({89.09235 84.915828 0.0) (90.0064 85.935872 0.0)

(90.90904999999999 86.98824399999999 0.0)

(91.8 88.074 0.0) (92.67895 89.19419600000001 0.0)
(93.54559999999999 90.34988800000001 0.0)
(94.39964999999999 91.542132 0.0)

(95.24079999999999 92.771984 0.0)

(96.06874999999999 94.04049999999999 0.0)

(96.8832 95.348736 0.0) (97.68385000000001 96.697748 0.0)
(98.4704 98.08859200000001 0.0)

(99.24254999999999 99.522324 0.0) (100.0 101.0 0.0))

number: 14
cpa: (7.210431076363022 -6.461186503081834 0.0)
linear: ((89.09235 84.915828 0.0)

(-0.9140500000000031 -1.020043999999999 (.0))
tnode: nil
threat: nil

The BB detects the unmatched segment node, then constiucts a
distinct track for this segment; the resulting solution is the two track
nodes given below. The first track node is the newly created node
from the unmatched segment node. The second track node is the old,
established track node that now contains only two supporting
segment nodes. The solution of the tracking problem is now two
trees (and, in general, a forest of trees) that represent two separate
tracks. Track 1 of Figure A-6 is as follows:

84

type:
time:
last-coord:
last-velocity:
threat:
snode:

i cpa-bracket:

check:
checklyst:

type:

time:
last-coord:
last-velocity:
threat:

snode:
cpa-bracket:

check:
checklyst:

NWC TP 7004

<tnode 1074280> is an instance of flavor tnode with instance variables:

track

(13)

(89.09235 76.75794999999999 0.0)
(-0.9140500000000031 -1.382850000000005 0.0)
nil

(<snode 1072948>)

((20.45362766455384 32.93339536190769)
(-27.08435313612137 -8.203934384099306))
nil

nil

Track 2 of Figure A-6 is as follows:

<tnode 1074676> is an instance of flavor tnode with instance variables:

track

(13)

(89.09235 84.4169265 0.0)
(-0.9140500000000031 -1.019809500000001 0.0)
t

(<snode 1073144> <snode 1073184>)
((-0.977760816000675 15.82484430129828)
(-15.96939768539792 2.67651494722635))

nil

nil

85

NwWC TP 7004

EXAMPLE 4

This example shows three craft, one of which has a signal that
fades for a short period. This example illustrates how faded
segments may be matched up with established segments, and
illustrates a different type of goal to activate the extend-segments
KS.

In Section 6 of this report, we showed that the MERGE-
SEGMENTS KS is activated by a recurrent goal. This means that once
a KSAR is created and scheduled, the goal is inhibited from creating
another KSAR until the KS finishes its attempt to extend atrophied
segments. In this example, three trajectories, as illustrated in Figure
A-7, are shown. Only one of these trajectories fades. The segment
node of this trajectory is given by

<snode 1073144> is an instance of flavor snode with instance variables:

type: segment
time: 210
coord: ((1.47 98.4704 0.0)

(0.7425 99.24254999999999 0.0)
(0.0 100.0 0.0))
3

number:
cpa: (49.92671489395662 47.0396750441671 0.0)
linear: ((1.47 98.4704 0.0)

(0.7274999999999999 -0.7721499999999963 0.0))
tnode: <tnode 1074676>
threat: nil

The initial part of the trajectory forms a track node. However, after
the time stamp of 2 the trajectory input fades and a time gap for the
input values results. The path does not return until the time stamp
of 8. At this time, a new segment node is generated on the BB. This
new segment node represents a newly found segment that looks as
follows:

87

NWC TP 7004

<snode 1075068> is an instance of flavor snode with instance variables:

type: segment
time: 87D
coord: ((5.52 93.54559999999999 0.0)
(4.8825 94.39964999999999 0.0))
number: 2
cpa: (48.38657378899811 36.11783945961739 0.0)
linear: ((5.52 93.54559999999999 0.0)
(0.6374999999999993 -0.8540500000000009 0.0))
tnode: <tnode 1074172>
threat: nil

Note that both these segments point to a track node, so that a track
exists for each one. Moreover, these tracks are different because the
second segment was not determined to be an extension of the first
one at this time.

After the MERGE KS has run, the second segment is recognized
as an extension of the first segment. So, the latest track and segment
nodes are retained, the older segment is removed from the BB, and
the pointer from the track of that segment node is deleted. If the
removed segment is the only segment supporting that track, then the
entire track is removed by removing that node from the BB, as is the
case here.

The KSAR that initiates this KS looks as follows:

<bbeventi071572> 1is an instance of flavor bbevent with iastance
variables:

source: nil

action: nil

type: extend-segments
variable: nil

time: nil

coord: nil

number: nil

threat: nil

snode: nii

pattern: nil

duration: recurrent
position: nil

goalptr: nil
conditions: nil

ksarptr: <ksar 1073224>

The KS has a recurrent duration and contains a pointer to the KSAR
that initiates MERGE-SEGMENTS.

88

NWC TP 7004

The resulting track node, which was established for the
reappearing track, now represents both the current and the merged
tracks. The older segment and its track have been removed and are
now represented by this track node as well. The track node looks as
follows:

<tnode1074632> is an instance of flavor tnode with instance variables:

type: track

time: (8)

last-coord: (5.52 93.54559999999999 0.0)

last-velocity: (0.637499999999993 -0.8540500000000009 0.0)
threat: nil

snode: (<snode 1075068>)

cpa-bracket: ((44.0999164100983 52.67323116789792)
(30.37506340557913 41.86061551365565))

check: nil

checklyst: nil

The old segment has been patched to the new track, although the old
segment data have not been appended to the new track. No history
of this older track is included in the current track because the
segment nodes and hit nodes are removed from the BB as soon as
possible. However, a short history trail could easily be added to the
track node.

89

Y—DISTANCE

NWC TP 7004

100

80 -

70 4

60

50 -

40 -

30 o DEFINING TRAPEZOID

0 ' 20 40 60 80
X—DISTANCE

FIGURE A—1. Example 1 Shows Single Trajectory Generated Via
Bezier's Curve With Every Tenth Point Shown. Defining trapezoid
shown with curve.

90

100

NWC TP 7004

GOAL PANEL DATA PANEL

3 —
TRACK
SOLUTION
TRACK TREE
DEMON
2 \\
SEGMENT /’\\p
DEMON
1
N4

FIGURE A—2. Example 1 BB Trace Shows Track Formation
for a Single Trajectory.

91

Y - DISTANCE

NWC TP 7004

100
80 -
]
60
<— FIRSTTRACK
)
]
40 -
SECOND TRACK
20 A /
0 v v T v v T v v T v — -T —r-
0 20 40 60 80 100

X - DISTANCE

FIGURE A—3. Example 2 Trajectory Shows Three
Separate Craft With Two Tracks Indicated.

92

NWC TP 7004

GOAL PANEL DATA PANEL

TRACKS i i 1 I IZ?‘

\—\h\&\ E SOLUTION TREES
SEGMENTS
HITS

/

FIGURE A—4. Example 2 BB Trace Shows BB for the Three-
Trajectory, Two-Track Example With Two Solution Trees.

Y—DISTANCE

NWC TP 7004

100

80 A

60 -

40

20 4

—@— TRAJECTORY 1
—o— TRAJECTORY 2
—a&— TRAJECTORY 3

20 40 60 80

X—DISTANCE

FIGURE A—S5. Example 3 Trajectory Shows Three-Aircraft
Problem Where One Track Breaks Away.

94

100

NWC TP 7004

GOAL PANEL DATA PANEL

TRACKS_ {@

It T J -

v v X

BREAK TRACK \\x
SEGMENTS N

HITS

FIGURE A—6. Example 3 BB Trace Illustrates How Support of
the Track—1 Hypothesis by the Segment Node is Broken.
Segment node eventually will support new track hypothesis.
Subgoaling triggered by failure of spline test is illustrated in
goal panel.

95

Y—DISTANCE

NWC TP 7004
100 #
90 A E
1 —a— TRAJECTORY 1
80 - —— TRAJECTORY 2
—o— TRAJECTORY 3
—o— TRAJECTORY 3
70 -
60 -
50
40 -
30 -
20
10
0 Y LR A | Y T ¥ T T L B A |
0 10 20 30 40 50 60 70 80 90 100
X—DISTANCE

FIGURE A—7. Example 4 Trajectory Illustrates
the Merging of Two Segments.

96

